Skip to main content
Log in

Investigations on Fe doped SnS thin films by nebulizer spray pyrolysis technique for solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and different concentrations of iron (Fe) doped tin sulphide (SnS) thin films were coated by nebulizer spray pyrolysis method with the substrate temperature of 350 °C. Polycrystalline nature of orthorhombic crystal structured pure and Fe doped SnS (Fe:SnS) thin films confirmed by X-ray diffraction (XRD) patterns. Structural studies further explored the preferential orientation of (201) plane for undoped SnS and their shifts to (400) and (111) directions for Fe:SnS at 6 and 10 wt.% of Fe concentration, respectively. The versatile route of structural modification has obviously demonstrated due to inclusion of Fe doping in SnS. Raman spectra further confirmed the structural variation of Fe:SnS. Topological variations obviously explained by atomic force microscopy images for pure and Fe:SnS. Optical results evidently claimed the deterioration of band gap values from 1.96 to 1.58 eV due to increase of Fe doping concentrations from 0 to 10 wt.%, respectively. Luminescence spectra showed a strong emission peak centered at 772 nm and low resistivity 3.32 × 10−2 Ω cm with the high carrier concentration for 8 wt.% of Fe concentration using prepared Fe:SnS film. The fabricated solar cell device with n-CdS exposed the 0.18% of efficiency for p-Fe:SnS prepared using 8 wt.% Fe concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.P. Klochko, O.V. Lukianova, V.R. Kopach, I.I. Tyukhov, N.D. Volkova, G.S. Khrypunov, V.M. Lyubov, M.M. Kharchenko, M.V. Kirichenko, Development of a new thin film composition for SnS solar cell. Sol. Energy 134, 156–164 (2016)

    Article  Google Scholar 

  2. F. Ballipinar, A.C. Rastogi, Tin sulfide (SnS) semiconductor photo-absorber thin films for solar cells by vapor phase sulfurization of Sn metallic layers using organic sulfur source. J. Alloy. Compd. 728, 179–188 (2017)

    Article  Google Scholar 

  3. S. Di Mare, D. Menossi, A. Salavei, E. Artegiani, F. Piccinelli, A. Kumar, G. Mariotto, A. Romeo, SnS thin film solar cells: perspectives and limitations. Coatings 7(2), 34 (2017)

    Article  Google Scholar 

  4. D. Avellaneda, G. Delgado, M.T.S. Nair, P.K. Nair, Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells. Thin Solid Films 515(15), 5771–5776 (2007)

    Article  Google Scholar 

  5. M. Parenteau, C. Carlone, Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors. Phys. Rev. B 41(8), 5227–5234 (1990)

    Article  Google Scholar 

  6. Y. Aimi, K. Takashi, A. Yoji, N. Shigeyuki, O. Hiroto, K. Hironori, A. Hideaki, Influence of Sn/S composition ratio on SnS thin-film solar cells produced via co-evaporation method. Jpn. J. Appl. Phys. 57(2S2), 02CE08 (2018)

    Article  Google Scholar 

  7. H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, O. Omoto, Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol. Energy Mater. Sol. Cells 35, 325–331 (1994)

    Article  Google Scholar 

  8. Y. Zou, Y. Wang, Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chem. Eng. J. 229, 183–189 (2013)

    Article  Google Scholar 

  9. X. Jiang, X. Yang, Y. Zhu, J. Shen, K. Fan, C. Li, In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J. Power Sources 237, 178–186 (2013)

    Article  Google Scholar 

  10. S. Weidong, H. Lihua, W. Haishui, Z. Hongjie, Y. Jianhui, W. Pinghui, Hydrothermal growth and gas sensing property of flower-shaped SnS 2 nanostructures. Nanotechnology 17(12), 2918 (2006)

    Article  Google Scholar 

  11. W. Anaf, O. Schalm, K. Janssens, K. De Wael, Understanding the (in)stability of semiconductor pigments by a thermodynamic approach. Dyes Pigm. 113, 409–415 (2015)

    Article  Google Scholar 

  12. K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M.J. Aziz, M.A. Scarpulla, T. Buonassisi, SnS thin-films by RF sputtering at room temperature. Thin Solid Films 519(21), 7421–7424 (2011)

    Article  Google Scholar 

  13. M. Devika, N.K. Reddy, K. Ramesh, V. Ganesan, E. Gopal, K.R. Reddy, Influence of substrate temperature on surface structure and electrical resistivity of the evaporated tin sulphide films. Appl. Surf. Sci. 253(3), 1673–1676 (2006)

    Article  Google Scholar 

  14. A. Tanuševski, D. Poelman, Optical and photoconductive properties of SnS thin films prepared by electron beam evaporation. Solar Energy Mater. Solar Cells 80(3), 297–303 (2003)

    Article  Google Scholar 

  15. C. Gao, H. Shen, L. Sun, H. Huang, L. Lu, H. Cai, Preparation of SnS films with zinc blende structure by successive ionic layer adsorption and reaction method. Mater. Lett. 64(20), 2177–2179 (2010)

    Article  Google Scholar 

  16. C. Gao, H. Shen, Influence of the deposition parameters on the properties of orthorhombic SnS films by chemical bath deposition. Thin Solid Films 520(9), 3523–3527 (2012)

    Article  Google Scholar 

  17. V. Dhanasekaran, T. Mahalingam, J.K. Rhee, J. Chu, Bath temperature effects on the microstructural and morphological properties of SnS thin films. J. Adv. Microsc. Res. 6(2), 126–130 (2011)

    Article  Google Scholar 

  18. K.D.A. Kumar, S. Valanarasu, K. Jeyadheepan, H.-S. Kim, D. Vikraman, Evaluation of the physical, optical, and electrical properties of SnO2: F thin films prepared by nebulized spray pyrolysis for optoelectronics. J. Mater. Sci.: Mater. Electron. 29(5), 3648–3656 (2018)

    Google Scholar 

  19. V. Gremenok, V.Y. Rud, Y.V. Rud, S. Bashkirov, V. Ivanov, Photosensitive thin-film In/p-Pb x Sn 1—x S Schottky barriers: fabrication and properties. Semiconductors 45(8), 1053 (2011)

    Article  Google Scholar 

  20. S. Zhang, S.Y. Cheng, H.J. Jia, H.F. Zhou, Preparation and characterization of aluminium-doped SnS thin films. Adv. Mater. Res. 418–420, 712–716 (2012)

    Article  Google Scholar 

  21. A. Akkari, M. Reghima, C. Guasch, N. Kamoun-Turki, Effect of copper doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition. J. Mater. Sci. 47(3), 1365–1371 (2012)

    Article  Google Scholar 

  22. M. Devika, N.K. Reddy, K. Ramesh, K. Gunasekhar, E. Gopal, K.R. Reddy, Low resistive micrometer-thick SnS: Ag films for optoelectronic applications. J. Electrochem. Soc. 153(8), G727–G733 (2006)

    Article  Google Scholar 

  23. K. Santhosh Kumar, C. Manoharan, S. Dhanapandian, A. Gowri Manohari, Effect of Sb dopant on the structural, optical and electrical properties of SnS thin films by spray pyrolysis technique. Spectrochim. Acta Part A 115, 840–844 (2013)

    Article  Google Scholar 

  24. M. Reghima, A. Akkari, C. Guasch, N. Kamoun-Turki, Effect of indium doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition. J. Renew. Sustain. Energy 4(1), 011602 (2012)

    Article  Google Scholar 

  25. M. Han, X. Zhang, Z. Zeng, The investigation of transition metal doped CuGaS2 for promising intermediate band materials. RSC Adv. 4(107), 62380–62386 (2014)

    Article  Google Scholar 

  26. A. Javed, A. Qurat ul, M. Bashir, Controlled growth, structure and optical properties of Fe-doped cubic π- SnS thin films. J. Alloy. Compd. 759, 14–21 (2018)

    Article  Google Scholar 

  27. C. Rockstuhl, S. Fahr, F. Lederer, Surface plasmon polaritons in metallic nanostructures: Fundamentals and their application to thin-film solar cells. In Next Generation of Photovoltaics. (Springer, New York, 2012) pp. 131–155

  28. A.G. Manohari, S. Dhanapandian, C. Manoharan, K.S. Kumar, T. Mahalingam, Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. 17, 138–142 (2014)

    Article  Google Scholar 

  29. S. Thiagarajan, A. Sanmugam, D. Vikraman (2017) Facile Methodology of Sol–Gel Synthesis for Metal Oxide Nanostructures. In Recent Applications in Sol–Gel Synthesis, Ed. Usha Chandra, InTechOpen. https://doi.org/10.5772/intechopen.68708

  30. V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J.-K. Rhee, J.P. Chu, Electrochemical deposition and characterization of cupric oxide thin films. Thin Solid Films 520(21), 6608–6613 (2012)

    Article  Google Scholar 

  31. M. Reghima, A. Akkari, C. Guasch, M. Castagné, N. Kamoun-Turki, Synthesis and characterization of Fe-doped SnS thin films by chemical bath deposition technique for solar cells applications. J. Renew. Sustain. Energy 5(6), 063109 (2013). https://doi.org/10.1063/1.4830256

    Article  Google Scholar 

  32. T.S. Reddy, M.S. Kumar, Effect of substrate temperature on the physical properties of co-evaporated Sn2S3 thin films. Ceram. Int. 42(10), 12262–12269 (2016)

    Article  Google Scholar 

  33. M. Li, Y. Wu, T. Li, Y. Chen, H. Ding, Y. Lin, N. Pan, X. Wang, Revealing anisotropy and thickness dependence of Raman spectra for SnS flakes. RSC Adv. 7(77), 48759–48765 (2017)

    Article  Google Scholar 

  34. D. Vikraman, S. Thiagarajan, K. Karuppasamy, A. Sanmugam, J.-H. Choi, K. Prasanna, T. Maiyalagan, M. Thaiyan, H.-S. Kim, Shape- and size-tunable synthesis of tin sulfide thin films for energy applications by electrodeposition. Appl. Surf. Sci. 479, 167–176 (2019)

    Article  Google Scholar 

  35. S. Sohila, M. Rajalakshmi, C. Ghosh, A.K. Arora, C. Muthamizhchelvan, Optical and Raman scattering studies on SnS nanoparticles. J. Alloy. Compd. 509(19), 5843–5847 (2011)

    Article  Google Scholar 

  36. T. Mahalingam, V. Dhanasekaran, G. Ravi, S. Lee, J.P. Chu, H.J. Lim, Effect of deposition potential on the physical properties of electrodeposited CuO thin films. J. Optoelectron. Adv. Mater. 12(6), 1327–1332 (2010)

    Google Scholar 

  37. O.V. Bilousov, Y. Ren, T. Törndahl, O. Donzel-Gargand, T. Ericson, C. Platzer-Björkman, M. Edoff, C. Hägglund, Atomic layer deposition of cubic and orthorhombic phase tin monosulfide. Chem. Mater. 29(7), 2969–2978 (2017)

    Article  Google Scholar 

  38. G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Progr. Nat. Sci. 25(1), 12–21 (2015)

    Article  Google Scholar 

  39. S. Gedi, V.R. Minnam Reddy, C. Park, J. Chan-Wook, K.T RR, Comprehensive optical studies on SnS layers synthesized by chemical bath deposition. Opt. Mater. 42, 468–475 (2015)

    Article  Google Scholar 

  40. E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra (1980) Electrical and optical properties of undoped and antimony-doped tin oxide films. J. Appl. Phys. 51(12):6243–6251

    Article  Google Scholar 

  41. B. Joseph, P.K. Manoj, V.K. Vaidyan, Studies on the structural, electrical and optical properties of Al-doped ZnO thin films prepared by chemical spray deposition. Ceram. Int. 32(5), 487–493 (2006)

    Article  Google Scholar 

  42. M. Patel, A. Ray, Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells. RSC Adv. 4(74), 39343–39350 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (R.G.P.1/45/39). This work was also partly supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1A09000823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sebastian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, S., Kulandaisamy, I., Valanarasu, S. et al. Investigations on Fe doped SnS thin films by nebulizer spray pyrolysis technique for solar cell applications. J Mater Sci: Mater Electron 30, 8024–8034 (2019). https://doi.org/10.1007/s10854-019-01124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01124-3

Navigation