Skip to main content
Log in

Dynamics of carbon nanotubes on Reiner–Philippoff fluid flow over a stretchable Riga plate

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this discussion, the influence of carbon nanotubes on fluid flow is explored with the aim of optimizing, facilitating and improving heat transfer and stabilizing the flowing base fluid in modern technology. The current fluid model called Reiner–Philippoff is characterized as pseudo-plastic, dilatant and Newtonian fluid subject to the viscosity variation, making it easy to navigate between fluid rheologies. As a result, the importance of lacing the Reiner–Philippoff fluid flow enhanced by magnetohydrodynamics with single-wall carbon nanotube (SWCNT) and multi-wall carbon nanotube (MWCNT) over a stretching sheet has been investigated. The governing mathematical model of the multi-variable differential equation has been transformed into a one-variable differential equation using a workable similarity transformation. The spectral local linearization method (SLLM) is employed to gain insight into the governing flow parameters, and the results are presented using tables and graphs. Prior to presenting the results of this study, the convergence and accuracy of the SLLM used for gaining insight into the governing flow parameters were established. Among the findings of this study is that the modified magnetic parameter supports the growth of the momentum boundary layer thickness for both SWCNT and MWCNT. The effective Prandtl number decreases the flow resistance more in the SWCNT compared to MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Stretching parameter

\(\bar{C}\) :

Concentration of the fluid

\(C_{f}\) :

Skin friction coefficient

\(c_{p}\) :

Specific heat capacity

\(D_{CT}\) :

Soret-type diffusivity

E\(_{c}\) :

Eckert number

f :

Velocity profile

g :

Transformed dependent variable

J :

Material constant

\(k_{1}\) :

Mean absorption coefficient

\(K^{*}_p\) :

Porosity parameter

Nu:

Nusselt number

Pr:

Prandtl number

\(q_{r}\) :

Radiative term

\(q_{w}\) :

Heat flux

R :

Radiation parameter

Re:

Reynolds number

Sc:

Schmidt number

Sr:

Soret number

Sh:

Sherwood number

\(\bar{T}\) :

Temperature of the fluid

\(\bar{u}\) :

Velocity component in the x-axis

\(u_{w}\) :

Mainstream velocity

\(\bar{v}\) :

Velocity component in the y-axis

\(\bar{x},\bar{y}\) :

Cartesian coordinates

Z :

Modified magnetic parameter

\(\gamma\) :

Bingham constant

\(\theta\) :

Temperature profile

\(\kappa\) :

Thermal conductivity

\(\lambda\) :

Reiner–Philippoff parameter

\(\rho\) :

Density

\(\nu\) :

Kinematic viscosity

\(\mu\) :

Dynamic viscosity

\(\pi\) :

Constant

\(\sigma ^{*}\) :

Stefan–Boltzmann constant

\(\uptau\) :

Shearing stress

\(\phi\) :

Concentration profile

\(\phi _{1}, \phi _{2}\) :

Nanoparticle volume fraction

\(\Omega\) :

Linearization coefficient

\(\eta\) :

Transformed independent variable

\(\psi\) :

Stream function

\(\Lambda\) :

Nanofluid expression

\(\infty\) :

Condition at infinity in the y-axis

\(\rm {f}\) :

Fluid

o :

Reference condition

x :

Local

w :

Wall

\(\rm {nf}\) :

Nanofluid

\(\rm {eff}\) :

Effective

\(\rm {MWCNT}\) :

Multi-wall carbon nanotubes

\(\rm {SWCNT}\) :

Single-wall carbon nanotubes

References

  1. S U S Choi and J A Eastman Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Washington, DC 66 1 (1995)

  2. H Masuda, A Ebata, K Teramae and N Hishiunma Netsu Bussei 7 227 (1993)

    Article  CAS  Google Scholar 

  3. S A Shehzad, Z Abdullah, A Alsaedi, F M Abbasi and T Hayat J. Magn. Magn. Mater. 397 108 (2016)

    Article  CAS  Google Scholar 

  4. R Kumar, R Kumar, S A Shehzad and M Sheikholeslami Int. J. Heat Mass Transf. 120 540 (2018)

    Article  CAS  Google Scholar 

  5. M O Lawal, K B Kasali, H A Ogunseye, M A Oni, Y O Tijani and Y T Lawal Partial Differ Equ Appl Math. 5 100318 (2022)

    Article  Google Scholar 

  6. M T Akolade and Y O Tijani Partial Differ Equ Appl Math. 2 100108 (2021)

    Article  Google Scholar 

  7. Y S Daniel, A Z Aziz, Z Ismail and F Salah J. Appl. Res. Technol. 15 464 (2017)

    Article  Google Scholar 

  8. M Hatami, L Sun, D Jing, H Günerhan and P K Kameswaran J. Appl. Comput. Mech. 7 1987 (2021)

    Google Scholar 

  9. M Ramzan, M Bilal, C Farooq and J D Chung Results Phys. 6 796 (2016)

    Article  Google Scholar 

  10. M Ramzan and M Bilal J. Mol. Liq. 6 212 (2016)

    Article  Google Scholar 

  11. T Hayat, T Muhammad, S A Shehzad, M S Alhuthali and J Lu J. Mol. Liq. 6 272 (2015)

    Article  Google Scholar 

  12. Y Lin, L Zheng, X Zhang, L Ma and G Chen Int.J. Heat Mass Transf. 84 903 (2015)

    Article  CAS  Google Scholar 

  13. H A Ogunseye, Y O Tijani and S Precious Heat Transf. 49 3374 (2020)

    Article  Google Scholar 

  14. H Alotaibi and K Rafique Open Phys. 49 0059 (2022)

    Google Scholar 

  15. A Aqel, K M M AbouEl-Nour, R A Ammar and A Al-Warthan Arab. J. Chem. 5 1 (2012)

    Article  CAS  Google Scholar 

  16. S Ahmad, S Nadeem, N Muhammad and A Issakhov Physica A 547 124054 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  17. T Hayat, S M Ullah, M I Khan and A Alsaedi Results Phys. 8 357 (2018)

    Article  Google Scholar 

  18. T Hayat, S M Ullah, M I Khan and A Alsaedi Mathematics (MDPI) 9 2927 (2021)

    Google Scholar 

  19. A Shafiq, I Khan, G Rasool, E M Sherif and A H Sheikh Mathematics (MDPI) 8 104 (2020)

    Article  Google Scholar 

  20. N H A Norzawary, N Bachok and F M Ali J. Multidiscip. Eng. Sci. Technol. 6 62 (2019)

    Google Scholar 

  21. M Rezaee, M Namvarpour, A Yeganegi and H Ghassemia Phys. of Fluids 32 092006 (2020)

    Article  CAS  Google Scholar 

  22. Q Z Xue Physica B Condens. 368 302 (2005)

    Article  CAS  Google Scholar 

  23. T Hayat, K Muhammad, M Farooq and A Alsaedi Plos One 11 0152923 (2016)

    Google Scholar 

  24. K Rafique, H Alotaibi, N Ibrar and I Khan Energies 15 01 (2022)

    Article  Google Scholar 

  25. H Alotaibi and K Rafique Crystals 11 11 (2021)

    Google Scholar 

  26. I Waini, N S Khashi’ie, A R Mohd Kasim, N A Zainal, A Ishak and I Pop Chin J. Phys. 77 45 (2022)

    CAS  Google Scholar 

  27. Y O Tijani, S D Oloniiju, K B Kasali and M T Akolade Heat Transf. 51 5659 (2020)

    Article  Google Scholar 

  28. K S Yam, S D Harris, D B Ingham and I Pop Int. J. Non Linear Mech. 44 1056 (2009)

    Article  Google Scholar 

  29. M I Khan, A Usman, S U Ghaffar and Y Khan Int. J. Mod. Phys. 44 2150083 (2020)

  30. A Ahmad, M Qasim, S Ahmed and J Braz Soc. Mech. Sci. 39 4469 (2017)

    Google Scholar 

  31. T Y Na Int. J. Non Linear Mech. 9 871 (1994)

    Article  Google Scholar 

  32. T Sajid, M Sagheer and S Hussain Math. Problem Eng. 16 (2020)

  33. O Otegbeye, S P Goqo and Md S Ansari AIP Conf. Proc. 2253 020013 (2020)

    Article  Google Scholar 

  34. T Sajid, S Tanveer, M Munsab and Z Sabir Appl. Nanosci. 11 321 (2021)

    Article  CAS  Google Scholar 

  35. S Rosseland Springer-Verlag, Berlin (1931)

  36. M T Akolade, A T Adeosun and J O Olabode J. Appl. Comput. Mech. 7 1999 (2021)

    Google Scholar 

  37. M Magyari and A Pantokratoras Int. Commun. Heat Mass Transf. 38 554 (2011)

    Article  Google Scholar 

  38. A Saeed, P Kumam, T Gul, W Alghamdi, W Kumam and A Khan Sci. Rep. 11 19612 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S S Motsa J. Appl. Math. 13 423628 (2013)

    Google Scholar 

  40. R E Bellman and R E Kalaba Quasi Linearization and Nonlinear Boundary-Value Problems (New York: Elsevier) (1965)

    Google Scholar 

  41. H A Ogunseye, S O Salawu, Y O Tijani, M Riliwan and P Sibanda Multidiscip. Model. Mater. Struct. 1 1573 (2019)

    Google Scholar 

  42. L N Trefethen, SIAM 10 (2000)

  43. R Cortell Appl. Math. Comput. 217 7564 (2011)

    MathSciNet  Google Scholar 

  44. I Waini, A Ishak and I Pop Int, J. Numer. Method H 29 3110 (2019)

    Article  Google Scholar 

  45. M Ferdows, M J Uddin and A A Afify Int.J. Heat Mass Transf. 56 181 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf O. Tijani.

Ethics declarations

Conflict of interest

The authors read and approved the manuscript and in addition declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tijani, Y.O., Akolade, M.T., Kasali, K.B. et al. Dynamics of carbon nanotubes on Reiner–Philippoff fluid flow over a stretchable Riga plate. Indian J Phys 98, 1007–1019 (2024). https://doi.org/10.1007/s12648-023-02872-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02872-z

Keywords

Navigation