Skip to main content
Log in

Annealing modified surface morphology and electrical transport behavior of nebulized spray pyrolysis deposited LaNiO3 and NdNiO3 thin films

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

LaNiO3 (LNO) and NdNiO3 (NNO) thin films have been prepared by nebulized spray pyrolysis on (001)-oriented LaAlO3 (LAO) and SrTiO3 (STO) substrates. The stoichiometric nitrate precursor in deionized water was spray pyrolyzed at ~ 300 °C. All films were given annealing treatment at different temperatures to tune the electrical transport behavior. The surface morphology of these films, in general, consists of granular and locally epitaxial regions. Films with electrical transport properties resembling those of similar films prepared by more sophisticated methods like pulsed laser deposition and sputtering are obtained at the annealing temperature range ~ 900–950 °C. High-resolution X-ray diffraction (HRXRD) and glancing incidence XRD bring out the single-phase nature. The films on STO show a small amount of in-plane tensile strain, while those on LAO are under small compressive strain. Annealing at a higher temperature (~ 1000 °C) enhances the tensile strain slightly while the compressive strain is lowered. Such behavior has been attributed to oxygen deficiency. The LNO films on STO and LAO show fairly good metallic behavior, and the electrical transport in the former is described in terms of a model represented by \(\rho \left( T \right) = \rho_{0} - aT^{0.5} + bT\). In contrast, the electrical resistivity of the LNO/LAO film is described by \(\rho \left( T \right) = \rho_{0} - aT^{0.5} + bT + cT^{2}\). Annealing at high temperatures promotes the insulating state in all the LNO films. The NNO films on LAO substrates show a paramagnetic metallic state which is followed by a metal insulator transition (MIT) on lowering the temperature. The MIT shifts to higher temperatures in 1000 °C annealed films. In contrast, the NNO/STO films show insulating behavior throughout, and annealing at higher temperatures further strengthens the insulating state. The insulator state shows a small polaron hopping kind of transport represented by \(\rho \left( T \right) = ATe^{{{\raise0.7ex\hbox{${E_{{\text{A}}} }$} \!\mathord{\left/ {\vphantom {{E_{{\text{A}}} } {k_{{\text{B}}} T}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${k_{{\text{B}}} T}$}}}}\) with temperature-dependent activation energies in the range of 100–55 meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J Varignon, M N Grisolia, J Íñiguez, A Barthélémy and M Bibes Npj Quantum Mater. 2 21 (2017)

    Article  ADS  Google Scholar 

  2. G Catalan Phase Transit. 81 729 (2008)

    Article  Google Scholar 

  3. J Torrance, P Lacorre, A Nazzal, E Ansaldo and Ch Niedermayer Phys. Rev. B. 45 8209 (1992)

    Article  ADS  Google Scholar 

  4. S Fomichev, G Khaliullin and M Berciu Phys. Rev. B. 101 024402 (2020)

    Article  ADS  Google Scholar 

  5. T Mizokawa, D I Khomskii and G A Sawatzky Phys. Rev. B. 61 11263 (2000)

    Article  ADS  Google Scholar 

  6. M L Medarde J. Phys. Condens. Matter. 9 1679 (1997)

    Article  ADS  Google Scholar 

  7. J A Alonso, M J Martínez-Lope, M T Casais, J L García-Muñoz and M T Fernández-Díaz Phys. Rev. B. 61 1756 (2000)

    Article  ADS  Google Scholar 

  8. H Guo et al. Nat. Commun. 9 43 (2018)

    Article  ADS  Google Scholar 

  9. F Wrobel et al. Appl. Phys. Lett. 110 041606 (2017)

    Article  ADS  Google Scholar 

  10. M Zhu, P Komissinskiy, A Radetinac, M Vafaee, Z Wang and L Alff Appl. Phys. Lett. 103 141902 (2013)

    Article  ADS  Google Scholar 

  11. J F Hamet, A Ambrosini and R Retoux J. Appl. Phys. 93 5136 (2003)

    Article  ADS  Google Scholar 

  12. E Cappelli, W O Tromp, S M Walker, A Tamai, M Gibert, F Baumberger and F Y Bruno APL Mater. 8 051102 (2020)

    Article  ADS  Google Scholar 

  13. L Yang, G Wang, C Mao, Y Zhang, R Liang, C Soyer, D Rémiens and X Dong J. Cryst. Growth 311 4241 (2009)

    Article  ADS  Google Scholar 

  14. H Y Lee, T B Wu and J F Lee Jpn. J. Appl. Phys. 36 301 (1997)

    Article  ADS  Google Scholar 

  15. F Sanchez, C Ferrater, C Guerrero, M V Garcıa-Cuenca and M Varela Appl. Phys. A. 71 59 (2000)

    Article  ADS  Google Scholar 

  16. H Wei, M Jenderka, M Grundmann and M Lorenz Phys. Status Solidi A. 212 1925 (2015)

    Article  ADS  Google Scholar 

  17. Y Kumar, H Bhatt, C L Prajapat, H K Poswal, S Basu and S Singh J. Appl. Phys. 124 065302 (2018)

    Article  ADS  Google Scholar 

  18. M C Weber Phys. Rev. B. 94 014118 (2016)

    Article  ADS  Google Scholar 

  19. J Son, P Moetakef, J M LeBeau, D Ouellette, L Balents, S J Allen and S Stemmer Appl. Phys. Lett. 96 062114 (2010)

    Article  ADS  Google Scholar 

  20. A Tiwari, C Jin and J Narayan Appl. Phys. Lett. 80 4039 (2002)

    Article  ADS  Google Scholar 

  21. S Asanuma et al. Appl. Phys. Lett. 97 142110 (2010)

    Article  ADS  Google Scholar 

  22. J Son, B Jalan, A P Kajdos, L Balents, S J Allen and S Stemmer Appl. Phys. Lett. 99 192107 (2011)

    Article  ADS  Google Scholar 

  23. G Catalan, R M Bowman and J M Gregg J. Appl. Phys. 87 606 (2000)

    Article  ADS  Google Scholar 

  24. Y Kumar, R J Choudhary, S K Sharma, M Knobe and R Kumar Appl. Phys. Lett. 101 132101 (2012)

    Article  ADS  Google Scholar 

  25. X Obradors, L M Paulius, M B Maple, J B Torrance, A I Nazzal, J Fontcuberta and X Granados Phys. Rev. B. 47 12353 (1993)

    Article  ADS  Google Scholar 

  26. P C Canfield, D J Thompson, S W Cheong and R L Rupp Phys. Rev. B. 47 12357 (1993)

    Article  ADS  Google Scholar 

  27. X K Lian, F Chen, X L Tan, P F Chen, L F Wang, G Y Gao, S W Jin and W B Wu Appl. Phys. Lett. 103 172110 (2013)

    Article  ADS  Google Scholar 

  28. P H Xiang, N Zhong, C G Duan, X D Tang, Z G Hu, P X Yang, Z Q Zhu and J H Chu J. Appl. Phys. 114 243713 (2013)

    Article  ADS  Google Scholar 

  29. B Mundet, J Jareño, J Gazquez, M Varela, X Obradors and T Puig Phys. Rev. Mater. 2 063607 (2018)

    Article  Google Scholar 

  30. M Jlassi, I Sta, M Hajji and H Ezzaouia Appl. Surf. Sci. 308 199 (2014)

    Article  ADS  Google Scholar 

  31. P S Patil and L D Kadam Appl. Surf. Sci. 199 211 (2002)

    Article  ADS  Google Scholar 

  32. A R Raju, H N Aiyer and C N R Rao Chem. Mater. 7 225 (1995)

    Article  Google Scholar 

  33. H N Aiyer, A R Raju, G N Subbanna and C N R Rao Chem. Mater. 9 755 (1997)

    Article  Google Scholar 

  34. T Ryll, P Reibisch, L Schlagenhauf, A B Huetter, M Döbeli, J L M Rupp and L J Gauckler J. Eur. Ceram. Soc. 32 1701 (2012)

    Article  Google Scholar 

  35. H K Singh, N Khare, P K Siwach and O N Srivastava J. Phys. D Appl. Phys. 33 921 (2000)

    Article  ADS  Google Scholar 

  36. V Agarwal, R Prasad, M P Singh, P K Siwach, A Srivastava, P Fournier and H K Singh Appl. Phys. Lett. 96 052512 (2010)

    Article  ADS  Google Scholar 

  37. M K Srivastava, P K Siwach, A Kaur and H K Singh Appl. Phys. Lett. 97 182503 (2010)

    Article  ADS  Google Scholar 

  38. S Chauhan, S Kumari, P K Siwach, K K Maurya, V Malik and H K Singh J. Magn. Magn. Mater. 499 166284 (2020)

    Article  Google Scholar 

  39. Y Kumar, R J Choudhary and R Kumar J. Appl. Phys. 112 073718 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Diana Dayas K thankfully acknowledges the project assistantship from Science and Engineering Research Board (ECR/2017/001852)-Government of India, Akash Kumar Singh, is grateful to the UGC for the award of the research fellowship. Subhashree Satpathy is thankful to DST-INSPIRE for the award of the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaparamban, D.D., Singh, A.K., Sathapathy, S. et al. Annealing modified surface morphology and electrical transport behavior of nebulized spray pyrolysis deposited LaNiO3 and NdNiO3 thin films. Indian J Phys 97, 2657–2668 (2023). https://doi.org/10.1007/s12648-023-02605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02605-2

Keywords

Navigation