Skip to main content
Log in

Eigenvalue spectra of non-relativistic particles confined by AB-flux field with Eckart plus class of Yukawa potential in point-like global monopole

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, we solve the radial Schrödinger wave equation in three dimensions under the Aharonov–Bohm (AB) flux field with Eckart plus class of Yukawa potential (CYP) in a point-like global monopole (PGM). We determine the approximate eigenvalue solution of the radial equation using the parametric Nikiforov–Uvarov (NU) method and analyze the effects of the topological defect and the magnetic flux field with this potential. Finally, we applied this eigenvalue solution to some potential models, such as Eckart potential, class of Yukawa potential, Hulthen plus Coulomb potential, and Eckart plus Yukawa potential. We show that the presence of the topological defects and the magnetic quantum flux field shifts the eigenvalue solution in comparison to the flat space results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

No new data are generated in this paper.

References

  1. C Eckart Phys. Rev. 35 1303 (1930)

    Article  ADS  Google Scholar 

  2. H Hellmann J. Chem. Phys. 3 61 (1935)

    Article  ADS  Google Scholar 

  3. M Hamzavi, S M Ikhdair and B I Ita Phys. Scr. 85 045009 (2012)

    Article  ADS  Google Scholar 

  4. L Hulthen Ark. Math. Astron. Fys. 28 A 1 (1942)

    MathSciNet  Google Scholar 

  5. H Yukawa Proc. Phys. Math. Soc. Jpn. 17 48 (1935)

    Google Scholar 

  6. E P Inyang et al. Rev. Mex. Fis. 68 14 (2022)

    Google Scholar 

  7. A I Ahmadov, S M Aslanova, M Sh and Orujova and S. V. Badalov, Adv. High Energy Phys. 2021 8830063 (2021)

  8. K J Oyewumi and O J Oluwadare Eur. Phys. J. Plus 131 280 (2016)

    Article  Google Scholar 

  9. H Tokmehdashi, A A Rajabi and M Hamzavi Adv. High Energy Phys. 2014 870523 (2014)

    Article  Google Scholar 

  10. S M Ikhdair Eur. Phys. J. A 39 307 (2009)

    Article  ADS  Google Scholar 

  11. S M Ikhdair and R Sever J. Math. Chem. 42 461 (2007)

    Article  MathSciNet  Google Scholar 

  12. O Bayrak and I Botztosun J. Phys. A: Math. Gen. 39 11521 (2006)

    Article  ADS  Google Scholar 

  13. O Bayrak and I Botztosun Phys. Scr. 76 92 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. S H Dong, W C Iuang, G H Sun and V B Bezerra J. Phys. A: Math. Theor. 40 10535 (2007)

    Article  ADS  Google Scholar 

  15. X Zou, L Z Yi and C S Jia Phys. Lett. A 346 54 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. C S Jia, P Guo and X L Peng J. Phys. A: Math. Gen 39 7737 (2006)

    Article  ADS  Google Scholar 

  17. J Stanek Cent. Eur. J. Phys. 9 1503 (2011)

    Google Scholar 

  18. A Kratzer Z. Phys. 3 28 (1920)

    Google Scholar 

  19. E Fues Ann. Phys. (Paris) 80 367 (1926)

    ADS  Google Scholar 

  20. K J Oyewumi Int. J. Theor. Phys. 49 1302 (2010)

    Article  MathSciNet  Google Scholar 

  21. M F Manning and N Rosen Phys. Rev. 44 953 (1933)

    Google Scholar 

  22. S M Ikhdair and R Sever Ann. Phys. (Berlin) 17 897 (2008)

    Article  ADS  Google Scholar 

  23. P M Morse Phys. Rev. 34 57 (1929)

    Article  ADS  Google Scholar 

  24. G Poschl and E Teller Z. Physik 83 143 (1933)

    Article  ADS  Google Scholar 

  25. Z H Deng and Y P Fan Shandong Univ. J 7 162 (1957)

    Google Scholar 

  26. T Tietz J. Chem. Phys. 38 3036 (1963)

    Article  ADS  Google Scholar 

  27. V Kumar, S B Bhardwaj, R M Singh and F Chand Phys. Scr. 97 055301 (2022)

    Article  ADS  Google Scholar 

  28. V Kumar, R M Singh, S B Bhardwaj, R Rani and F Chand Mod. Phys. Lett. A 37 2250010 (2022)

    Article  ADS  Google Scholar 

  29. C O Edet et al. Results Phys. 39 105749 (2022)

    Article  Google Scholar 

  30. R Khordad, C O Edet and A N Ikot Int. J. Mod. Phys. C 33 2250106 (2022)

    Article  ADS  Google Scholar 

  31. U S Okorie, A N Ikot, C A Onate, M C Onyeaju and G J Rampho Mod. Phys. Lett. A 36 2150230 (2021)

    Article  ADS  Google Scholar 

  32. U S Okorie, C O Edet, A N Ikot, G J Rampho and R Sever Indian J Phys. 95 411 (2021)

    Article  ADS  Google Scholar 

  33. R Rani, S B Bhardwaj and F Chand Pramana-J. Phys. 91 46 (2018)

    Article  ADS  Google Scholar 

  34. R Rani, V Kumar, S B Bhardwaj, R M Singh and F Chand Indian J Phys. 94 1705 (2020)

    Article  ADS  Google Scholar 

  35. G T Osobonye, M Adekanmbi, A N Ikot, U S Okorie and G J Rampho Pramana-J. Phys. 95 98 (2021)

    Article  ADS  Google Scholar 

  36. U S Okorie, A Tas, A N Ikot, G T Osobonye and G J Rampho Indian J Phys. 95 2275 (2021)

    Article  ADS  Google Scholar 

  37. A N Ikot, W Azogor, U S Okorie, F E Bazuaye, M C Onjeaju, C A Onate and E O Chukwuocha Indian J Phys. 93 1171 (2019)

    Article  ADS  Google Scholar 

  38. C A Onate, M C Onyeaju, E E Ituen, A N Ikot, O Ebomwonyi, J O Okoro and K O Dopamu Indian J Phys. 92 487 (2018)

    Article  ADS  Google Scholar 

  39. H Hassanabadi, A N Ikot, C P Onyenegecha and S Zarrinkamar Indian J Phys. 91 1103 (2017)

    Article  ADS  Google Scholar 

  40. R D Woods and D S Saxon Phys. Rev. 95 577 (1954)

    Article  ADS  Google Scholar 

  41. B C Lütfüoğlu, J Lipovský and J Kříž Eur. Phys. J Plus 133 17 (2018)

    Article  Google Scholar 

  42. B C Lütfüoğlu, A N Ikot, M Karakoc, G T Osobonye, A T Ngiangia and O Bayrak Mod. Phys. Lett. A 36 2150016 (2021)

    Article  ADS  Google Scholar 

  43. C O Edet and P O Okoi Rev. Mex. Fis. 65 333 (2019)

    Article  Google Scholar 

  44. C P Onyenegecha, C J Okereke, I J Njoku, C A Madu, R U Ndubuisi and U K Nwajeri Eur. Phys. J Plus 137 147 (2022)

    Article  Google Scholar 

  45. F Ahmed Phys. Scr. 98 015403 (2023)

    Article  ADS  Google Scholar 

  46. F. Ahmed, arXiv: 2209.13490 [quant-ph]

  47. F Ahmed Int. J. Geom. Meths. Mod. Phys. (2022). https://doi.org/10.1142/S0219887823500603

    Article  Google Scholar 

  48. C A Onate and J O Ojonubah J. Theor. Appl. Phys. 10 21 (2016)

    Article  ADS  Google Scholar 

  49. C O Edet and A N Ikot Eur. Phys. J. Plus 136 432 (2021)

    Article  Google Scholar 

  50. C Furtado and F Moraes J. Phys. A: Math. Gen. 33 5513 (2000)

    Article  ADS  Google Scholar 

  51. R L L Vitoria and H Belich Phys. Scr. 94 125301 (2019)

    Article  ADS  Google Scholar 

  52. Geusa de A. Marques and Valdir B. Bezerra, Class. Quantum Gravit. 19, 985 (2002)

  53. P Nwabuzor et al. Entropy 23 (8), 1060 (2021)

  54. F. Ahmed, Mol. Phys. 120, Article: e2124935 (2022)

  55. F. Ahmed, arXiv: 2210.04617 [hep-th]

  56. F Ahmed Mol. Phys. (2022). https://doi.org/10.1080/00268976.2022.2155596

    Article  Google Scholar 

  57. H Hassanabadi, S Zare, J Kriz and B C Lütfüoğlu EPL 132 60005 (2020)

    Article  ADS  Google Scholar 

  58. B C Lütfüoğlu, J Kriz, S Zare and H Hassanabadi Phys. Scr. 96 015005 (2021)

    Article  ADS  Google Scholar 

  59. A L Cavalcanti de Oliveira and E R Bezerra de Mello Class. Quant. Grav. 23 5249 (2006)

    Article  ADS  Google Scholar 

  60. E A F Braganca, R L L Vitória, H Belich and E R Bezerra de Mello Eur. Phys. J. C 80 206 (2020)

    Article  ADS  Google Scholar 

  61. F Ahmed Sci. Rep. 12 8794 (2022)

    Article  ADS  Google Scholar 

  62. R L Greene and C Aldrich Phys. Rev. A 14 2363 (1976)

    Article  ADS  Google Scholar 

  63. A F Nikiforov and V B Uvarov Special Function of Mathematical Physics (Basel: Birkhauser) (1988)

    Book  MATH  Google Scholar 

  64. Y Aharonov and D Bohm Phys. Rev. 115 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  65. M Peshkin and A Tonomura The Aharonov-Bohm Effect. Lecture Notes Phys, vol 340 (Berlin, Germany: Springer-Verlag) (1989)

  66. W Greiner and B Muller Quantum Mechanics: An Introduction (Berlin, Germany: Springer) (1994)

    Book  MATH  Google Scholar 

  67. A Boumali and H Aounallah Adv. High Energy Phys. 2018 1031763 (2018)

    Article  Google Scholar 

  68. F Ahmed, K Ahmed, A Ahmed, A Islam and B P Barman J. Theor. Appl. Phys. 16 4 162233 (2022)

    Google Scholar 

  69. M de Montigny, H Hassanabadi, J Pinfold and S Zare Eur. Phys. J Plus 136 788 (2021)

    Article  Google Scholar 

  70. M de Montigny, J Pinfold, S Zare and H Hassanabadi Eur. Phys. J Plus 137 54 (2022)

    Article  Google Scholar 

  71. F Ahmed Proc. R. Soc. A 478 20220091 (2022)

    Article  ADS  Google Scholar 

  72. F Ahmed Indian J. Phys. (2022). https://doi.org/10.1007/s12648-022-02438-5

    Article  Google Scholar 

  73. A I Ahmadov, M Demirci, S M Aslanova and M F Mustamin Phys. Lett. A 384 126372 (2020)

    Article  MathSciNet  Google Scholar 

  74. K. R. Purohit, A. Kumar Rai and R. H. Parmar, AIP Conf. Proc. 2220, 120004 (2020)

Download references

Funding

No fund has received for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizuddin Ahmed.

Ethics declarations

Conflict of interest

There is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The parametric Nikiforov–Uvarov (NU) method

Appendix: The parametric Nikiforov–Uvarov (NU) method

The Nikiforov–Uvarov method is a helpful technique to calculate the exact and approximate energy eigenvalue and the wave functions of the Schrödinger-like equation and other second-order differential equations of physical interest. According to this method, the wave functions of a second-order differential equation [[63]]

$$\begin{aligned}{} & {} \frac{d^2 \psi (s)}{ds^2}+\frac{(\alpha _1-\alpha _2\,s)}{s\,(1-\alpha _3\,s)}\frac{d \psi (s)}{ds}\nonumber \\{} & {} \quad +\frac{(-\xi _1\,s^2+\xi _2\,s-\xi _3)}{s^2\,(1-\alpha _3\,s)^2}\psi (s)=0 \end{aligned}$$
(A.1)

are given by

$$\begin{aligned}{} & {} \psi (s)\nonumber \\{} & {} \quad =s^{\alpha _{12}}(1-\alpha _3 s)^{-\alpha _{12}-\frac{\alpha _{13}}{\alpha _3}}P^{(\alpha _{10}-1,\frac{\alpha _{11}}{\alpha _3}-\alpha _{10}-1)}_{n}(1-2\alpha _3 s). \end{aligned}$$
(A.2)

And that the energy eigenvalues equation

$$\begin{aligned}{} & {} \alpha _2\,n-(2\,n+1)\,\alpha _5+(2\,n+1)\,(\sqrt{\alpha _9}+\alpha _3\,\sqrt{\alpha _8})\nonumber \\{} & {} \quad +n\,(n-1)\,\alpha _3+\alpha _7+2\,\alpha _3\,\alpha _8+2\,\sqrt{\alpha _8\,\alpha _9}=0. \end{aligned}$$
(A.3)

The parameters \(\alpha _4,\ldots ,\alpha _{13}\) are obatined from the six parameters \(\alpha _1,\ldots ,\alpha _3\) and \(\xi _1,\ldots ,\xi _3\) as follows:

$$\begin{aligned}{} & {} \alpha _4=\frac{1}{2}\,(1-\alpha _1),\quad \alpha _5=\frac{1}{2}\,(\alpha _2-2\,\alpha _3),\quad \alpha _6=\alpha ^2_{5}+\xi _1,\nonumber \\{} & {} \quad \alpha _7=2\,\alpha _4\,\alpha _{5}-\xi _2,\quad \alpha _8=\alpha ^2_{4}+\xi _3,\nonumber \\{} & {} \alpha _9=\alpha _6+\alpha _3\,\alpha _7+\alpha ^{2}_3\,\alpha _8,\quad \alpha _{10}=\alpha _1+2\,\alpha _4+2\,\sqrt{\alpha _8},\nonumber \\{} & {} \quad \alpha _{11}=\alpha _2-2\,\alpha _5+2\,(\sqrt{\alpha _9}+\alpha _3\,\sqrt{\alpha _8}),\nonumber \\{} & {} \quad \alpha _{12}=\alpha _4+\sqrt{\alpha _8},\quad \alpha _{13}=\alpha _5-(\sqrt{\alpha _9}+\alpha _3\,\sqrt{\alpha _8}). \end{aligned}$$
(A.4)

A special case where \(\alpha _3=0\), we find

$$\begin{aligned} \lim _{\alpha _3\rightarrow 0} P^{(\alpha _{10}-1,\frac{\alpha _{11}}{\alpha _3}-\alpha _{10}-1)}_{n}\,(1-2\,\alpha _3\,s)=L^{\alpha _{10}-1}_{n} (\alpha _{11}\,s), \end{aligned}$$
(A.5)

and

$$\begin{aligned} \lim _{\alpha _3\rightarrow 0} (1-\alpha _3\,s)^{-\alpha _{12}-\frac{\alpha _{13}}{\alpha _3}}=e^{\alpha _{13}\,s}. \end{aligned}$$
(A.6)

Therefore the wave-function from (A.2) becomes

$$\begin{aligned} \psi (s)=s^{\alpha _{12}}\,e^{\alpha _{13}\,s}\,L^{\alpha _{10}-1}_{n} (\alpha _{11}\,s), \end{aligned}$$
(A.7)

where \(L^{(\beta )}_{n} (x)\) denotes the generalized Laguerre polynomial.

The energy eigenvalues equation reduces to

$$\begin{aligned}{} & {} n\,\alpha _2-(2\,n+1)\,\alpha _5+(2\,n+1)\,\sqrt{\alpha _9}+\alpha _7\nonumber \\{} & {} \quad +2\,\sqrt{\alpha _8\,\alpha _9}=0. \end{aligned}$$
(A.8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F. Eigenvalue spectra of non-relativistic particles confined by AB-flux field with Eckart plus class of Yukawa potential in point-like global monopole. Indian J Phys 97, 2307–2318 (2023). https://doi.org/10.1007/s12648-023-02590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02590-6

Keywords

Navigation