Skip to main content
Log in

Approximate bound and scattering solutions of Dirac equation for the modified deformed Hylleraas potential with a Yukawa-type tensor interaction

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Analytical bound and scattering state solutions of Dirac equation are investigated for the modified deformed Hylleraas potential with a Yukawa-type tensor interaction. The energy equation, phase shifts and normalization constants of the pseudospin and spin symmetry limits are represented. Since the modified deformed Hylleraas potential reduces to the Pöschl–Teller, Hulthén and deformed Hylleraas potential, we have obtained energy equation and scattering properties of the Dirac equation for these potentials within a Yukawa-type tensor interaction. We have also reported some numerical results to show the effect of tensor interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y Xu, S He and C S Jia, Phys. Scr. 81 0453001 (2010)

    Google Scholar 

  2. X Y Gu and S H Dong, J. Math. Chem. 49 2053 (2011)

    Article  MathSciNet  Google Scholar 

  3. M R Pahlavani and S A Alavi, Commun. Theor. Phys. 58 739 (2012)

  4. G F Wei and S H Dong Eur. Phys. J. A 43 185 (2010)

    Article  ADS  Google Scholar 

  5. C Y Chen, S D Sheng and L F Lin, Phys. Scr. 74 405 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. C S Jia, X P Li and L H Zhang Few-Body Syst. 52 11 (2012)

    Article  ADS  Google Scholar 

  7. S H Dong and G H Sun Phys. Lett. A 314 261 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. G F Wei and S H Dong Eur. Phys. J. A 46 207 (2010)

  9. H Hassanabadi, B H Yazarloo, S Zarrinkamar and A A Rajabi, Phys. Rev. C 84 064003 (2011)

    Article  ADS  Google Scholar 

  10. Y P Varshni, Rev. Mod. Phys. 29 664 (1957)

    Article  ADS  Google Scholar 

  11. C S Jia, L H Zhang and C W Wang Chem. Phys. Lett. 667 211 (2017)

    Article  ADS  Google Scholar 

  12. C S Jia, J W Dai, L H Zhang, J Y Liu and X L Peng Phys. Lett. A 379 137 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. C S Jia and Z W Shui Eur. Phys. J. A 51 144 (2015)

    Article  ADS  Google Scholar 

  14. C S Jia, T Chen and S He Phys. Lett. A 377 682 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. C S Jia, J W Dai, L H Zhang, J Y Liu and G D Zhang Chem. Phys. Lett. 619 54 (2015)

    Article  ADS  Google Scholar 

  16. H Hassanabadi, E Maghsoodi, S Zarrinkamar and H Rahimov Chin. Phys. B 21 120302 (2012)

  17. R Barnan and R Rajkumar J. Phys. A: Math. Gen. 20 3051 (1987)

    Article  Google Scholar 

  18. M Jameelt J. Phys. A: Math. Gen. 19 1967 (1986)

    Article  ADS  Google Scholar 

  19. J N Ginocchio Phys. Rev. Lett. 78 (1997) 436

    Article  ADS  Google Scholar 

  20. J N Ginocchio Phys. Rep. 414 (2005) 165

    Article  ADS  MathSciNet  Google Scholar 

  21. B H Yazarloo, L L Lu, G. Liu, S. Zarrinkamar and H. Hassanabadi, Adv. High Energy Phys. 2013 317605 (2013)

    Article  Google Scholar 

  22. L D Landau and E M Lifshitz, Quantum Mechanics (Non-Relativistic Theory) 3rd ed. (New York: Pergamon) (1979)

    MATH  Google Scholar 

  23. G F Wei, C Y Long and S H Dong Phys. Lett. A 372 2592 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. H Hassanabadi, B H Yazarloo and S Zarrinkamar Few-Body Syst. 54 2017 (2013)

    Article  ADS  Google Scholar 

  25. S Zarrinkamar, A A Rajabi, B H Yazarloo and H Hassanabadi Chin. Phys. C 37 023101 (2013)

  26. O Aydogdu, E Maghsoodi and H Hassanabadi Chin. Phys. B 22 010302 (2013)

    Article  Google Scholar 

  27. A F Nikiforov, V B Uvarov, Special Functions of Mathematical Physics (Springer Basel) (1988)

  28. B H Yazarloo, H Hassanabadi and S Zarrinkamar Eur. Phys. J. Plus 127 51 (2012)

  29. C Tezcan and R Sever Int. J. Theor. Phys. 48 337 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ikot.

Appendix

Appendix

The NU method solves many linear second order differential equations by reducing them to a generalized equation of hypergeometric type. Here, instead of the original formulation, we use the parametric version which enables us to solve a second-order differential equation of the form [27, 28, 29]

$$ \left\{ {\frac{{d^{2} }}{{ds^{2} }} + \frac{{\alpha_{1} - \alpha_{2} s}}{{s(1 - \alpha_{3} s)}}\frac{d}{ds} + \frac{1}{{[s(1 - \alpha_{3} s)]^{2} }}[ - \xi_{1} s^{2} + \xi_{2} s - \xi_{3} ]} \right\}\psi = 0 $$
(77)

According to the NU method, the eigenfunctions is

$$ \psi (s) = s^{{\alpha_{12} }} (1 - \alpha_{3} s)^{{ - \alpha_{12} - \frac{{\alpha_{13} }}{{\alpha_{3} }}}} P_{n}^{{\left( {\alpha_{10} - 1,\frac{{\alpha_{11} }}{{\alpha_{3} }} - \alpha_{10} - 1} \right)}} (1 - 2\alpha_{3} s) $$
(78)

and the energy of the system satisfies

$$ \alpha_{2} n - (2n + 1)\alpha_{5} + (2n + 1)(\sqrt {\alpha_{9} } + \alpha_{3} \sqrt {\alpha_{8} } ) + n(n - 1)\alpha_{3} + \alpha_{7} + 2\alpha_{3} \alpha_{8} + 2\sqrt {\alpha_{8} \alpha_{9} } = 0, $$
(79)

where

$$ \begin{aligned} \alpha_{4} = \frac{1}{2}(1 - \alpha_{1} ),\quad \alpha_{5} = \frac{1}{2}(\alpha_{2} - 2\alpha_{3} ),\quad \alpha_{6} = \alpha_{5}^{2} + \xi_{1} ,\quad \alpha_{7} = 2\alpha_{4} \alpha_{5} - \xi_{2} ,\quad \alpha_{8} = \alpha_{4}^{2} + \xi_{3} \hfill \\ \alpha_{9} = \alpha_{3} \alpha_{7} + \alpha_{3}^{2} \alpha_{8} + \alpha_{6} ,\quad \alpha_{10} = \alpha_{1} + 2\alpha_{4} + 2\sqrt {\alpha_{8} } \hfill \\ \alpha_{11} = \alpha_{2} - 2\alpha_{5} + 2(\sqrt {\alpha_{9} } + \alpha_{3} \sqrt {\alpha_{8} } ),\quad \alpha_{12} = \alpha_{4} + \sqrt {\alpha_{8} } \hfill \\ \alpha_{13} = \alpha_{5} - (\sqrt {\alpha_{9} } + \alpha_{3} \sqrt {\alpha_{8} } ) \hfill \\ P_{n}^{(\alpha ,\beta )} (x) = \frac{\varGamma (\alpha + n + 1)}{n!\varGamma (\alpha + \beta + n + 1)}\sum\limits_{m = 0}^{n} {\left( \begin{aligned} n \hfill \\ m \hfill \\ \end{aligned} \right)} \frac{\varGamma (\alpha + \beta + n + m + 1)}{\varGamma (\alpha + m + 1)}\left( {\frac{x - 1}{2}} \right)^{m} \hfill \\ \end{aligned} $$
(80)

And \( P_{n}^{(\alpha ,\beta )} \) is Jacobi polynomial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanabadi, H., Ikot, A.N., Onyenegecha, C.P. et al. Approximate bound and scattering solutions of Dirac equation for the modified deformed Hylleraas potential with a Yukawa-type tensor interaction. Indian J Phys 91, 1103–1113 (2017). https://doi.org/10.1007/s12648-017-1009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1009-z

Keywords

PACS Nos.

Navigation