Skip to main content
Log in

Nonlinear electron mobility due to asymmetric doping in V-shaped double quantum well FET structure

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The nonlinear electron mobility µ is obtained in an asymmetric doped V-shaped double quantum well field-effect transistor (FET) structure based on AlxGa1-xAs. The nonmonotonic oscillation of µ occurs owing to intersubband interactions through the ionized impurity scattering when two subbands are occupied. The magnitude of µ is dominated by the alloy disorder scattering because of the alloy channel system. The oscillatory enhancement of the low-temperature mobility increases by increasing the difference of doping concentrations in the extreme barriers. The wavy nature of µ is also enhanced through a decrease in the height of the V-shaped potential and an increase in the barrier width at the center. The combined effect of relocation of subband wave functions in the wells and occurrence of anticrossing of subband energy levels near the resonance of subband states of the wells changes the intrasubband and intersubband scattering rate matrix elements significantly, thus causing nonlinear µ. The results of mobility obtained by us can be utilized to analyze the fine-tuning of channel conductivity in V-shaped quantum well FET structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J H Davies The Physics of low-dimensional semiconductors: An introduction, (New Work: Cambridge university press) Ist edition (1998) doi: https://doi.org/10.1017/CBO9780511819070

  2. L M Burileanu, E C Niculescu, N Eseanu and A Radu Physica E. 41 856 (2009)

    Article  Google Scholar 

  3. F Ungan, J C Martínez-Orozco, R L Restrepo, M E Mora-Ramos, E Kasapoglu and C A Duque Superlattices Microstruct. 81 26 (2015)

    Article  Google Scholar 

  4. F Ebadpour Physica B. 458 58 (2015)

    Article  Google Scholar 

  5. H S Aydinoglu, S Sakiroglu, H Sari, F Ungan and I Sokmen Philol. Mag. 98 2151 (2018)

    Article  Google Scholar 

  6. U Yesilgul, F Ungan, E Kasapoglu, H Sari and I Sokmen Superlattices Microstruct. 50 400 (2011)

    Article  Google Scholar 

  7. B Chen, K Guo, R Wang and Z Zhang Superlattice and Microstruct. 45 125 (2009)

    Article  Google Scholar 

  8. Q Zhao, S Aqiqid, J Youa, M Kriad, K Guob, E Feddid, Z Zhanga and J Yua Phys. E. 115 113707 (2019)

    Article  Google Scholar 

  9. A S Durmuslar, C A Billur, A Turkoglu and F Ungan Optics Commun. 499 127266 (2021).

    Article  Google Scholar 

  10. T A Sargsian, M A Mkrtchyan, H A Sarkisyan and D B Hayrapetyan Phys. E. 126 114440 (2021)

    Article  Google Scholar 

  11. M Manikandan, D Nirmal, P Prajoon, G Dhivyasri and V Chandran IOP Conf. Series: Mater. Sci. Eng. 906 012011 (2020)

    Article  Google Scholar 

  12. E B Al, E Kasapoglu, S Sakiroglu and H S Sökmen Mater. Sci. Semiconductor Process. 135 106076 (2021)

    Article  Google Scholar 

  13. S S Zhou, X Liu, H Yan, Y Gao, H Xu, J Zhao, Z Quan, C Gui and S Liu Scientif. Rep. 8 11053 (2018)

    Article  Google Scholar 

  14. S Fassaria, M Gadella, M L Glasser and L M Nietoa Annal. Phys. 389 48 (2018)

    Article  Google Scholar 

  15. Z Zhang, J Yuan, K Guo and E Feddi Materials. 12 78 (2019).

    Article  Google Scholar 

  16. K H Gao, G Yu, Y M Zhou, W Z Zhou, T Lin, J H Chu and N Dai J. Appl. Phys. 105 013712 (2009)

    Article  Google Scholar 

  17. N Sahoo, A K Panda and T Sahu. Phys. Status Solid (b). 254 1700221 (2017)

  18. C Zhang and K Guo Physica B. 383 183 (2006)

    Article  Google Scholar 

  19. O Ozturk, E Ozturk and S Elagoz Physica scripta. 94 115809 (2019)

    Article  Google Scholar 

  20. M Hosseini Optik. 127 4554 (2016)

    Article  Google Scholar 

  21. N C Mamani, C A Duarte and G M Gusev J. Phys. 36 336 (2006)

    Google Scholar 

  22. A Salhi, M Alanzi and B Alonazi J. of Display Technology 11 217 (2015) http://www.osapublishing.org/jdt/issue.cfm?volume=11&issue=3

  23. R Ferreira and G Bastard Rep. Prog. Phys. 60 345 (1997) https://iopscience.iop.org/issue/0034-4885/60/3

  24. K Muraki, N Kumada, T Saku and Y Hirayama Japanese J. Appl. Phys. 39 2444 (2000)

    Article  Google Scholar 

  25. R Fletcher, M Tsaousidou, T Smith, P T Coleridge, Z R Wasilewski and Y Feng Physical Rev. B. 71 155310 (2005)

    Article  Google Scholar 

  26. D Laroche, S H Huang, E Nielsen and C W Liu Phys. Lett. 106 143503 (2015)

    Google Scholar 

  27. J K Choi, N Vagidov, A Sergeev, S Kalchmair, G Strasser, F Vasko and V Mirtin J. Appl. Phys. 51 074004 (2012) https://iopscience.iop.org/volume/1347-4065/51

  28. P Bhattacharya Properties of III-V quantum wells and superlattices (INSPEC, IEE, London, U.K.) (1996)

  29. A Palevski, F Beltram and F Capasso Rev. Lett. 65 1929 (1990)

    Article  Google Scholar 

  30. T Sahu, S Palo and N Sahoo Physica E. 46 155 (2012)

    Article  Google Scholar 

  31. Y Nandan and M S Mehata Scientific Reports. 9 2 (2019)

    Article  Google Scholar 

  32. G Liu and K Guo Thin solid films. 662 27 (2018)

    Article  Google Scholar 

  33. E Kasapoglu and C A Duque Mater. Sci. Semiconductor Process. 137 106232 (2022)

    Article  Google Scholar 

  34. E H Kim and Y H Shin Phys. Lett. 89 032114 (2006)

    Google Scholar 

  35. X Q Yu and Y B Yu Superlattices Microstruct.. 62 225 (2013)

    Article  Google Scholar 

  36. J Wu, K Guo and G Liu Physica B. 446 59 (2014)

    Article  Google Scholar 

  37. I Karabulut and E Paspalakis Physica E. 81 294 (2016)

    Article  Google Scholar 

  38. R K Nayak, S Das, A K Panda and T Sahu Superlattices and Microstructures. 89 75 (2016)

    Article  Google Scholar 

  39. K A Rodríguez-Magdaleno, A Turkoglu, F Ungan, M E Mora-Ramos and J C Martínez-Orozco Superlattices and Microstruct. 156 106988 (2021)

    Article  Google Scholar 

  40. T Ando, A B Fowler and F Stern Rev. Mod. Phys. 54 437 (1982)

    Article  Google Scholar 

  41. S Adachi J. Appl. Phys. 58 R1 (1985)

    Article  Google Scholar 

  42. Y Ando and T Itoh J. Appl. Phys. 61 1497 (1987)

    Article  Google Scholar 

  43. M Mohapatra, A Sahu, S R Panda, S Das, T Sahu and A K Panda Japanese J. Appl. Phys. 56 064101 (2017)

    Article  Google Scholar 

  44. A K Saxsena and A R Adams J. Appl. Phys. 58 2640 (1985)

    Article  Google Scholar 

  45. A K Panda, D Jena, S K Palo and T Sahu Lecture Notes in Networks and Systems. (eds.) N R Das and S Sarkar : Springer) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinath Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, D., Palo, S.K., Panda, A.K. et al. Nonlinear electron mobility due to asymmetric doping in V-shaped double quantum well FET structure. Indian J Phys 96, 4185–4191 (2022). https://doi.org/10.1007/s12648-022-02366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02366-4

Keywords

Navigation