Skip to main content

Advertisement

Log in

The influence of optical absorption under the external electric field and magnetic field of parabolic quantum dots

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The optical absorption of parabolic quantum dots (QDs) with different confining potentials energies in the \(\rho \) and z directions under external electric and magnetic fields are studied theoretically. We have applied the compact-density-matrix approach and iterative method to obtain the linear and nonlinear optical absorption coefficients (OAs). The energy levels and confined wave function of the system are acquired by the effective-mass approximation. The results indicate that the resonant peak values of linear and nonlinear OAs are affected by the size, the radius, incident optical intensity and the electric field. The position of the OAs peak shifts when the values of radius and magnetic field change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S Almansour J. Korean Phys. Soc. 75 806 (2019)

    Article  ADS  Google Scholar 

  2. B Bekar, F K Boz, S Aktas and S E Okan Acta Phys. Polonica A 136 882 (2019)

    Article  ADS  Google Scholar 

  3. J A Vinasco et al Phys. Status Solidi (B) 225 1700470 (2018)

    Article  Google Scholar 

  4. S Sakiroglu, D G Kilic, U Yesilgul, F Ungan, E Kasapoglu, H Sari and I Sokmen Phys. B Condens. Matter 521 215 (2017)

    Article  Google Scholar 

  5. B S Kandemir and D Akay Philos. Mag. 97 2225 (2017)

    Article  ADS  Google Scholar 

  6. B S Kandemir and D Akay Phys. Status Solidi (b) 255 1800163 (2018)

    Article  ADS  Google Scholar 

  7. M F C Fobasso, A J Fotue and S C Kenfack Phys. Lett. A 382 3490 (2018)

    Article  ADS  Google Scholar 

  8. R Khordad Indian J. Phys. 86 513 (2012)

    Article  ADS  Google Scholar 

  9. A K Bordoloi, D Mahanta, S K Dolui and F Ungan Indian J. Phys. 81 89 (2007)

    Google Scholar 

  10. O Ozturk, E Ozturk and S Elagoz Int. J. Modern Phys. B 33 1950175 (2019)

    Article  ADS  Google Scholar 

  11. P Kumari, S Sinha and L Mishra J. Pure Appl. Phys. Ind. 7 275 (2017)

    Google Scholar 

  12. H V Phuc, D Q Khoa, N V Hieu and N N Hieu Optik 127 10519 (2016)

    Article  ADS  Google Scholar 

  13. R Khordad J. Opt. 42 83 (2013)

    Article  Google Scholar 

  14. C Kenfack-Sadem, F C F Mbognou and A J Fotue J. Low Temp. Phys. 203 327 (2021)

    Article  ADS  Google Scholar 

  15. S Dahiya, S Lahon, R Sharma and M Verma Basic Appl. Eng. Res. 5 311 (2018)

    Google Scholar 

  16. J H Yuan, L L Wang, Z Y Xiong, N Chen, Z H Zhang, and Y X Zhao Eur. Phys. J. Plus 133 1 (2018)

    Article  Google Scholar 

  17. S Sakiroglu Int. J. Modern Phys. B 30 1650209 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. C Y Wang, R X Ti and H R Wu Indian J. Phys. 92 1037 (2018)

    Article  ADS  Google Scholar 

  19. R Arulmozhi, A John Peter and C W Lee Chem. Phys. Lett. 742 137129 (2020)

    Article  Google Scholar 

  20. G H Wang, Q Guo, L J Wu and X B Yang PPhys. E Low-dimens. Syst. Nanostruct. 39 75 (2007)

    Article  ADS  Google Scholar 

  21. E B Al and S Sakiroglu Phys. E Low-dimens. Syst. Nanostruct. 119 114011 (2020)

    Article  Google Scholar 

  22. X C Li, C B Ye, J Gao and B Wang Chin. Phys. B 29 087302 (2020)

    Article  ADS  Google Scholar 

  23. M E Mora-Ramos et al. Heliyon 6 e03194 (2020)

    Article  Google Scholar 

  24. E.B. Al, E. Kasapoglu, H. Sari and I. Sökmen Philos. Mag. 101 117 (2020)

    Article  ADS  Google Scholar 

  25. L Bouzaiene, H Alamri, L Sfaxi and H Maaref J. Alloys Compd. 655 172 (2016)

    Article  Google Scholar 

  26. Z H Zhang, G C Zhuang, K X Guo and J H Yuan Superlattices Microstruct. 100 440 (2016)

    Article  ADS  Google Scholar 

  27. H Dakhlaoui Optik 168 416 (2018)

    Article  ADS  Google Scholar 

  28. E Feddi, El Haouari M and E Assaid Phys. Rev. B 68 235313 (2003)

    Article  ADS  Google Scholar 

  29. A Talbi and E Feddi Superlattices Microstruct. 85 581 (2015)

    Article  ADS  Google Scholar 

  30. E Feddi and A Talbi Phys. B Condens. Matter 524 64 (2017)

    Article  ADS  Google Scholar 

  31. E Feddi, A Zouitine and E Feddi J. Appl. Phys. 117 064309 (2015)

    Article  ADS  Google Scholar 

  32. F Dujardin, A Oukerroum and A Oukerroum J. Appl. Phys. 111 034317 (2012)

    Article  ADS  Google Scholar 

  33. J A Vinasco, A Radu and E Niculescu Sci. Rep. 9 1 (2019)

    Article  Google Scholar 

  34. C V Nguyen, N N Hieu and D Muoi J. Appl. Phys. 123 034301 (2018)

    Article  ADS  Google Scholar 

  35. J A Vinasco, A Radu and E Kasapoglu Sci. Rep. 8 1 (2018)

    Article  Google Scholar 

  36. A Talbi,E Feddi and A Zouitine Phys. E Low-dimens. Syst. Nanostruct. 84 303 (2016)

    Article  ADS  Google Scholar 

  37. H Sari, U Yesilgul, and F Ungan, S Sakiroglu, E Kasapoglu and I Sökmen Chem. Phys. 487 11 (2017)

    Article  Google Scholar 

  38. N T Tien, N N T. Hung, T T Nguyen and P T B Thao Phys. B Condens. Matter 519 63 (2017)

    Article  ADS  Google Scholar 

  39. R Khordad Superlattices Microstruct. 54 7 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  40. F K Boz and S Aktas Superlattices Microstruct. 37 281 (2005)

    Article  ADS  Google Scholar 

  41. G Rezaei, M R K Vahdani and B Vaseghi Curr. Appli. Phys. 11 176 (2011)

    Article  ADS  Google Scholar 

  42. W F Xie Phys. Status Solidi (B) 246 2257 (2009)

    Article  ADS  Google Scholar 

  43. H V Phuc, N Duy Ann Thuan and L Dinh Superlattices Microstruct. 100 1112 (2016)

    Article  ADS  Google Scholar 

  44. A L Vartanian, A L Asatryan, A Mkhitaryan, S Avetisyan and A A Kirakosyan Phys. Mathe. Sci. 51 124 (2017)

    Google Scholar 

  45. H Yildirim and M Tomak Eur. Phys. J. B 50 559 (2006)

    Article  ADS  Google Scholar 

  46. M J Karimi and G Rezaei Phys. B Condens. Matter 406 4423 (2011)

    Article  ADS  Google Scholar 

  47. Z H Zhang, K X Guo and B Chen Superlattices Microstruct. 47 325 (2010)

    Article  ADS  Google Scholar 

  48. L Zhang, X Li and X Liu PPhys. B Condens. Matter 618 413197 (2021)

    Article  Google Scholar 

  49. N Aghoutane et al. Phys. E Appl. Phys. A 125 1 (2019)

    Article  ADS  Google Scholar 

  50. V Ashrafi-Dalkhani, S Ghajarpour-Nobandegani and M J Karimi Eur. Phys. J. B 92 1 (2019)

    Article  Google Scholar 

  51. M Solaimani and L Lavaei Int. J. Modern Phys. B 32 1850007 (2018)

    Article  ADS  Google Scholar 

  52. S Sakiroglu, E Kasapoglu, R L Restrepo, C A Duque and I Skmen Phys. Status Solidi (B) 255 1600457 (2017)

    Article  Google Scholar 

  53. B Li, K X Guo, Z L Liu and Y B Zheng Phys. Lett. A 327 1337 (2008)

    Article  ADS  Google Scholar 

  54. B Li, K X Guo, C J Zhang and Y B Zheng Phys. Lett. A 376 493 (2007)

    Article  ADS  Google Scholar 

  55. G Rezaei, B Vaseghi, F Taghizadeh, M R K Vahdani and M J Karimi Superlattices Microstruct 48 450 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, X., Zhao, Z. et al. The influence of optical absorption under the external electric field and magnetic field of parabolic quantum dots. Indian J Phys 96, 3645–3650 (2022). https://doi.org/10.1007/s12648-022-02282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02282-7

Keywords

Navigation