Skip to main content
Log in

Anisotropic solutions through decoupling in \(f({\mathbb {R}},T)\) gravity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper discusses the extended gravitational decoupling approach for a static sphere in the framework of \(f({\mathbb {R}},T)\) gravity where \({\mathbb {R}}\) represents the Ricci scalar and T is the trace of the energy–momentum tensor. In this approach, the domain of a known solution is extended by incorporating a new gravitational source. Transformations in radial and temporal metric functions split the system of field equations into two subsystems corresponding to isotropic and additional sources. We consider the Korkina–Orlyanskii metric as a solution for the system related to the seed source and extend it to the anisotropic domain using some physical constraints. A linear gravity model, \(f({\mathbb {R}}, T)={\mathbb {R}}+2\chi T\) (where \(\chi\) couples geometry to matter), is utilized to investigate the effects of the decoupling parameter on the acquired solutions. Further, the physical acceptability, compactness and redshift of anisotropic solutions are explored graphically for the compact star 4U 1538-52. It is found that well-behaved solutions can be constructed in the framework of \(f({\mathbb {R}}, T)\) gravity through the decoupling technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E Hubble Proc. Nat. Acad. Sci. 15 168 (1929)

    Article  ADS  Google Scholar 

  2. S Perlmutter et al Nature 391 51 (1998)

    Article  ADS  Google Scholar 

  3. A G Riess et al Astrophys. J. 116 1009 (1998)

    Google Scholar 

  4. S Perlmutter et al Astrophys. J. 517 565 (1999)

    Article  ADS  Google Scholar 

  5. E J Copeland, M Sami and S Tsujikawa Int. J. Mod. Phys. D 15 1753 (2006)

    Article  ADS  Google Scholar 

  6. D Parkinson et al Phys. Rev. D 86 103518 (2012)

    Article  ADS  Google Scholar 

  7. C Blake et al Mon. Not. R. Astron. Soc. 425 405 (2012)

    Article  ADS  Google Scholar 

  8. J Martin Compt. Rendus Phys. 13 566 (2012)

    Article  ADS  Google Scholar 

  9. N Sivanandam. Phys. Rev. D 87 083514 (2013)

    Article  ADS  Google Scholar 

  10. H A Buchdahl. Mon. Not. R. Astron. Soc. 150 1 (1970)

    Article  ADS  Google Scholar 

  11. T Harko, F S N Lobo, S Nojiri and S D Odintsov Phys. Rev. D 84 024020 (2011)

    Article  ADS  Google Scholar 

  12. X M Deng and Y Xie Int. J. Theor. Phys. 54 1739 (2015)

    Article  Google Scholar 

  13. M J S Houndjo Int. J. Mod. Phys. D 21 1250003 (2012)

    Article  ADS  Google Scholar 

  14. R Zaregonbadi, M Farhoudi and N Riazi Phys. Rev. D 94 084052 (2016)

    Article  ADS  Google Scholar 

  15. A Das, S Ghosh, B K Guha, S Das, F Rahaman and S Ray Phys. Rev. D 95 124011 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. G A Carvalho, R V Lobato, P H R S Moraes, J D V Arbañil, E Otoniel, R M Marinho Jr and M Malheiro Eur. Phys. J. C 77 871 (2017)

    Article  ADS  Google Scholar 

  17. D Deb, B K Guha, F Rahaman and S Ray Phys. Rev. D 97 084026 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. S Hansraj and A Banerjee Phys. Rev. D 97 104020 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. D Deb, F Rahaman, S Ray and B K Guha J. Cosmol. Astropart. Phys. 03 044 (2018)

    Article  ADS  Google Scholar 

  20. T Ordines and E Carlson Phys. Rev. D 99 104052 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. P S Singh and K P Singh New Astron. 84 101542 (2021)

    Article  Google Scholar 

  22. A Ruderman Annu. Rev. Astron. Astrophys. 10 427 (1972)

    Article  ADS  Google Scholar 

  23. V Canuto Annu. Rev. Astron. Astrophys. 12 167 (1974)

    Article  ADS  Google Scholar 

  24. I Lovas, J Németh and K Sailor Nucl. Phy. A 430 731 (1984)

    Article  ADS  Google Scholar 

  25. M Gleiser and K Dev Int. J. Mod. Phys. D 13 1389 (2004)

    Article  ADS  Google Scholar 

  26. B C Paul and R Deb Astrophys. Space Sci. 354 421 (2014)

    Article  ADS  Google Scholar 

  27. J Ovalle Phys. Rev. D 95 104019 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. J Ovalle, R Casadio, R da Rocha and A Sotomayor Eur. Phys. J. C 78 122 (2018)

    Article  ADS  Google Scholar 

  29. M Estrada and F Tello-Ortiz Eur. Phys. J. Plus 113 453 (2018)

    Article  Google Scholar 

  30. E Morales and F Tello-Ortiz Eur. Phys. J. C 78 618 (2018)

    Article  ADS  Google Scholar 

  31. M Sharif and S Sadiq Eur. Phys. J. C 78 410 (2018)

    Article  ADS  Google Scholar 

  32. R Pérez Eur. Phys. J. Plus 133 244 (2018)

    Article  Google Scholar 

  33. K N Singh, S K Maurya, M K Jasim and F Rahaman Eur. Phys. J. C 79 851 (2019)

    Article  ADS  Google Scholar 

  34. M Sharif and A Waseem Ann. Phys. 405 14 (2019)

    Article  ADS  Google Scholar 

  35. M Sharif and A Majid Chin. J. Phys. 68 406 (2020)

    Article  Google Scholar 

  36. S K Maurya and F Tello-Ortiz Phys. Dark Universe 27 100442 (2020)

    Article  Google Scholar 

  37. S K Maurya, A Errehymy, K N Singh, F Tello-Ortiz and M Daoud Phys. Dark Universe 30 100640 (2020)

    Article  Google Scholar 

  38. M Zubair and H Azmat Eur. Phys. J. Plus 136 112 (2021)

    Article  Google Scholar 

  39. R Casadio, J Ovalle and R da Rocha Class. Quantum Grav. 32 215020 (2015)

    Article  ADS  Google Scholar 

  40. J Ovalle Phys. Lett. B 788 213 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  41. E Contreras and P Bargueo Class. Quantum Grav. 36 215009 (2019)

    Article  ADS  Google Scholar 

  42. S K Maurya, F Tello-Ortiz and M K Jasim Eur. Phys. J. C 80 918 (2020)

    Article  ADS  Google Scholar 

  43. S K Maurya Eur. Phys. J. C 80 429 (2020)

    Article  ADS  Google Scholar 

  44. M Sharif and Q Ama-Tul-Mughani Chin. J. Phys. 65 207 (2020)

    Article  Google Scholar 

  45. M Sharif and A Majid Phys. Dark Universe 30 100610 (2020)

    Article  Google Scholar 

  46. M Sharif and S Saba Int. J. Mod. Phys. D 29 2050041 (2020)

    Article  ADS  Google Scholar 

  47. J D Brown Class. Quantum Grav. 10 1579 (1993)

    Article  ADS  Google Scholar 

  48. R L Seliger and G B Whitham Proc. R. Soc. 305 1 (1968)

    ADS  Google Scholar 

  49. M J S Houndjo and O F Piattella Int. J. Mod. Phys. D 2 1250024 (2012)

    Article  Google Scholar 

  50. P H R S Moraes, R A C Correa and G Ribeiro Eur. Phys. J. C 78 192 (2018)

    Article  ADS  Google Scholar 

  51. S Chakraborty Gen. Relativ. Gravit. 45 2039 (2013)

    Article  ADS  Google Scholar 

  52. A H Bokhari and A Qadir J. Math. Phys. 28 1019 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  53. M P Korkina and O Y Orlyanskii Ukr. J. Phys. 36 885 (1991)

    Google Scholar 

  54. S K Maurya and Y K Gupta Astrophys. Space Sci. 340 323 (2012)

    Article  ADS  Google Scholar 

  55. S K Maurya, A Banerjee and S Hansraj Phys. Rev. D 97 044022 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  56. W Israel Nuovo Cim. B 44 1 (1966)

    Article  ADS  Google Scholar 

  57. G Darmois Memorial Des Sciences Mathematiques (Gauthier-Villars, Paris) Vol 25 (1927)

    Google Scholar 

  58. M Sharif and Q Ama-Tul-Mughani Ann. Phys. 415 168122 (2020)

    Article  Google Scholar 

  59. M Sharif and A Majid Phys. Dark Universe 32 100803 (2021)

    Article  Google Scholar 

  60. M L Rawls, J A Orosz, J E McClintock, M A P Torres, C D Bailyn and M M Buxton Astrophys. J. 730 25 (2011)

    Article  ADS  Google Scholar 

  61. K Lake Phys. Rev. D 67 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  62. R Bowers and E Liang Astrophys. J. 188 657 (1974)

    Article  ADS  Google Scholar 

  63. G Abellán, V A Torres-Sánchez, E Fuenmayor and E Contreras Eur. Phys. J. C 80 177 (2020)

    Article  ADS  Google Scholar 

  64. E Contreras, F Tello-Ortiz and S K Maurya Class. Quantum Grav. 37 155002 (2020)

    Article  ADS  Google Scholar 

  65. H A Buchdahl Phys. Rev. 116 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  66. B V Ivanov Phys. Rev. D 65 104011 (2002)

    Article  ADS  Google Scholar 

  67. L Herrera Phys. Lett. A 165 206 (1992)

    Article  ADS  Google Scholar 

  68. A Di Prisco, E Fuenmayor, L Herrera and V Varela Phys. Lett. A 195 23 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  69. A Di Prisco, L Herrera and V Varela Gen. Relativ. Gravit. 29 1239 (1997)

    Article  ADS  Google Scholar 

  70. H Abreu, H Hernandez and L A Nunez Class. Quantum Gravit. 24 4631 (2007)

    Article  ADS  Google Scholar 

  71. H Heintzmann and W Hillebrandt Astron. Astrophys. 38 51 (1975)

    ADS  Google Scholar 

  72. S K Maurya, F Tello-Ortiz and S Ray Phys. Dark Universe 31 100753 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sharif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Furqan, F. Anisotropic solutions through decoupling in \(f({\mathbb {R}},T)\) gravity. Indian J Phys 96, 3375–3393 (2022). https://doi.org/10.1007/s12648-021-02257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02257-0

Keywords

Navigation