Skip to main content
Log in

Reexamining RHDE models in FRW Universe with two IR cutoff with redshift parametrization

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated that the gravitational field equations are not compatible with conservation equation in Dixit et al. (Euro Phys J Plus 135:831, 2020). Therefore, the expression for an equation of state parameter along with the dynamics of \(\omega _{T}\)\(\omega _{T}^{\prime }\) plane does not reflect the actual behaviors of RHDE models in f(RT) gravity and thus the method and technique given in Dixit et al. (2020) represents a fractured way for analyzing RHDE models in f(RT) theory of gravity. We also investigate that the derived Universe is in decelerating phase of expansion for \(0 < \beta \le 1.5\) which is contrary to the result obtained in Dixit et al. (2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M Li Phys. Lett. B 603 1 (2004)

    Article  ADS  Google Scholar 

  2. S Nojiri and S D Odintsov Gen. Relat. Gravit. 38 1285 (2006)

    Article  ADS  Google Scholar 

  3. M Li, X D Li, S Wang and X Zhang J. Cosmol. Astropart. Phys. 06 036 (2009)

    Article  ADS  Google Scholar 

  4. Y Gong, B Wang and Y Z Zhang Phys. Rev. D 72 043510 (2005)

    Article  ADS  Google Scholar 

  5. S Wang, Y Wang and M Li Phys. Rep. 696 1 (2017)

    Article  ADS  Google Scholar 

  6. C Tsallis and L J L Cirto, Eur. Phys. J. C 73 2487 (2013)

    Article  ADS  Google Scholar 

  7. M Tavayef, A Sheykhi, K Bamba and H Moradpour Phys. Lett. B 781 195 (2018)

    Article  ADS  Google Scholar 

  8. L Xu, W Li and J Lu Eur. Phys. J. C 60 135 (2009)

    Article  ADS  Google Scholar 

  9. A K Yadav Eur. Phys. J. C 81 8 (2021)

    Article  ADS  Google Scholar 

  10. R C Nunes, E M Barboza Jr, E M C Abreu and J A Neto J. Cosmol. Astropart. Phys. 08 051 (2016)

    Article  ADS  Google Scholar 

  11. H Moradpour, S A Moosavi, I P Lobo, J P Morais Graca, A Jawad and I. G. Salako Eur. Phys. J. C 78 829 (2018)

    Article  ADS  Google Scholar 

  12. A Rènyi On Measures of Entropy and Information University California Press 4.1 547 (1961)

  13. M Masi Phys. Lett. A 338 217 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. H Touchette Phys. A 305 84 (2002)

    Article  MathSciNet  Google Scholar 

  15. C Tsallis Entropy 13 1765 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. A Rènyi Probability Theory (North-Holland, 1970)

  17. C Tsallis J. Stat. Phys. 52 479 (1988)

    Article  ADS  Google Scholar 

  18. N Komatsu Eur. Phys. J. C 77 229 (2017)

    Article  ADS  Google Scholar 

  19. H Moradpour, A Bonilla, E M C Abreu and J A Neto Phys. Rev. D 96 123504 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. H Moradpour, A Sheykhi, C Corda and I G Salako Phys. Lett. B 783 82 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. H Moradpour Int. J. Theor. Phys. 55 4176 (2016)

    MathSciNet  Google Scholar 

  22. E M C Abreu, J Ananias Neto, A C R Mendes and W Oliveira Phys. A 392 5154 (2013)

    Article  MathSciNet  Google Scholar 

  23. E M C Abreu and J Ananias Neto Phys. Lett. B 727 524 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. S Nojiri, S D Odintsov and E N Saridakis Eur. Phys. J. C 79 242 (2019)

    Article  ADS  Google Scholar 

  25. S Nojiri, S D Odintsov, E N Saridakis and R Myrzakulov Nucl. Phys. B 950 114850 (2020)

    Article  Google Scholar 

  26. M Padmanabhan Gen. Relativ. Gravit. 40 529 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. J Yoo and Y Watanabe Int. J. Mod. Phys. D 21 1230002 (2012)

    Article  ADS  Google Scholar 

  28. F Wang and J M Yang Eur. Phys. J. C 45 815 (2006)

    Article  ADS  Google Scholar 

  29. T Harko, F S N Lobo, S Nojiri and S D Odintsov Phys. Rev. D 84 024020 (2011)

    Article  ADS  Google Scholar 

  30. M Demianski Astron. Astrophys. 454 55 (2006)

    Article  ADS  Google Scholar 

  31. M Lubini, C Tortora, J N Jetzer and S Capozziello Eur. Phys. J. C 71 1834 (2011)

    Article  ADS  Google Scholar 

  32. X M Deng and Y Xie Eur. Phys. J. C 75 539 (2015)

    Article  ADS  Google Scholar 

  33. T Harko Phys. Rev. D 90 044067 (2014)

    Article  ADS  Google Scholar 

  34. C P Singh and P Kumar Eur. Phys. J. C 74 11 (2014)

    Article  Google Scholar 

  35. M J S Houndjo, F G Alvarenga, M E Rodrigues, D F Jardim and R Myrzakulov Eur. Phys. J. Plus 129 171 (2014)

    Article  Google Scholar 

  36. M. Sharif, S Rani and R Myrzakulov Eur. Phys. J. Plus 128 123 (2013)

    Article  Google Scholar 

  37. P H R S Moraes and J R L Santos Eur. Phys. J. C 76 60 (2016)

    Article  ADS  Google Scholar 

  38. P H R S Moraes Eur. Phys. J. C 75 168 (2015)

    Article  ADS  Google Scholar 

  39. R A C Correa and P H R S Moraes Eur. Phys. J. C 76 100 (2016)

    Article  ADS  Google Scholar 

  40. A K Yadav Braz. J. Phys. 49 262 (2019)

    Article  ADS  Google Scholar 

  41. A K Yadav and A T Ali Int. J. Geom. Meth. Mod. Phys. 15 1850026 (2018)

    Article  Google Scholar 

  42. A K Yadav Euro. Phys. J. Plus 129 194 (2014)

    Article  Google Scholar 

  43. R Prasad, L K Gupta, G K Goswami and A K Yadav Pramana J. Phys. 94 135 (2020)

    Article  ADS  Google Scholar 

  44. J Barrientos, O Guillermo and F Rubilar Phys. Rev. D 90 028501 (2014)

    Article  ADS  Google Scholar 

  45. P K Sahoo, S K Tripathi and P Sahoo Mod. Phys. Lett. A 33 1850193 (2018)

    Article  ADS  Google Scholar 

  46. P H R S Moraes, J D Arbãnil and M Malheiro, J. Cosmol. Astropart. Phys. 2016 005 (2016)

    Article  Google Scholar 

  47. A Das, F Rahaman, B K Guha and S Ray Eur. Phys. J. C 76 654 (2016)

    Article  ADS  Google Scholar 

  48. D Deb, F Rahaman, S Ray and B K Guha J. Cosmol. Astropart. Phys. 2018 044 (2018)

    Article  Google Scholar 

  49. R Lobato et al.J. Cosmol. Astropart. Phys. 2020 039 (2020)

    Article  Google Scholar 

  50. J M Z Pretel, S E Joras, R R R Reis and J D V Arbãnil J. Cosmol. Astropart. Phys. 2021 064 (2021)

    Article  Google Scholar 

  51. D Deb et al.Monthly Notices of the Royal Astronomical Society 485 5652 (2019)

    Article  ADS  Google Scholar 

  52. S. K. Maurya et al.Phys. Rev. D 100 044014 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  53. D Deb, S V Ketov, M Khlopov and S Ray J. Cosmol. Astropart. Phys. 2019 070 (2019)

    Article  Google Scholar 

  54. S Biswas, D Shee, B K Guha and S Ray Eur. Phys. J. C 80 175 (2020)

    Article  ADS  Google Scholar 

  55. S K Maurya and F Tello-Ortiz Annals of Physics 414 168070 (2020)

    Article  MathSciNet  Google Scholar 

  56. P Rej, P Bhar and M Govender, Eur. Phys. J. C 81 316 (2021)

    Article  ADS  Google Scholar 

  57. Y Bisabr Phys. Rev. D 86 044025 (2012)

    Article  ADS  Google Scholar 

  58. O Minazzoli Phys. Rev. D 88 027506 (2013)

    Article  ADS  Google Scholar 

  59. P H R S Moraes, R A C Correa and G Ribeiro, Eur. Phys. J. C 78 192 (2018)

    Article  ADS  Google Scholar 

  60. Z Yousaf and K Bamba Phys. Rev. D 93 064059 (2016)

    Article  ADS  Google Scholar 

  61. Z Yousaf, K Bamba and M Z Bhatti Phys. Rev. D 93 124048 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  62. Z Yousaf Phys. Dark Uni. 28 100509 (2020)

    Article  Google Scholar 

  63. M Sharif and Z Yousaf Astrophys. Space Sc. 354 471 (2014)

    Article  ADS  Google Scholar 

  64. Z Yousaf and M Ilyas and M Z Bhatti Euro. Phys. J. Plus 132 1 (2017)

    Article  Google Scholar 

  65. Z Yousaf, M Z Bhatti and M. Ilyas Euro. Phys. J. C 78 1 (2018)

    Article  Google Scholar 

  66. S D Odintsov and D Saez-Gomez Phys. Lett. B 725 437 (2013); arXiv:1304.5411

    Article  ADS  MathSciNet  Google Scholar 

  67. A Dixit, V K Bhardwaj and A Pradhan Euro. Phys. J. Plus 135 831 (2020); arXiv: 2010.10847 [gr-qc]

  68. A K Yadav Phys. Rev. D 102 108301 (2020)

  69. G Varshney, U K Sharma and A Pradhan Euro. Phys. J. Plus 135 1 (2020)

    Article  Google Scholar 

  70. N J Poplawski arXiv: gr-qc/0608031

  71. N Ahmed and A Pradhan Int. J. Theor. Phys. 53 289 (2014)

    Article  Google Scholar 

  72. H Shabani and A H Ziaie Int. J. Mod. Phys. A 33 1850050 (2018)

    Article  ADS  Google Scholar 

  73. H Shabani and A H Ziaie Eur. Phys. J. C 77 282 (2017)

    Article  ADS  Google Scholar 

  74. S Nojiri, S D Odintsov, V K Oikonomou and T Paul Phys. Rev. D 102 023540 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  75. S Nojiri, S D Odintsov and T Paul arXiv: 2105.08438

Download references

Acknowledgements

We are grateful to Dr. Nafis Ahmad from King Khalid University, Saudi Arabia for his kind assistance in improving some technical aspects of the manuscript. The author expresses his gratitude to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through the Research Group Program under Grant No. RGP. 1/253/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Einstein field equation with RHDE fluid is read as

$$\begin{aligned} R_{ij} - \frac{1}{2}g_{ij}R = 8\pi \left( T_{ij}^{m} + T_{ij}^{\Re }\right) . \end{aligned}$$
(23)

where \(T_{ij}^{m}\) and \(T_{ij}^{\Re }\) are energy momentum tensor of matter and RHDE fluid, respectively.

Thus, the field equations for metric (6) are read as

$$\begin{aligned} 3H^{2}&= 8\pi (\rho + \rho _{T}), \end{aligned}$$
(24)
$$\begin{aligned} 2\dot{H} + 3H^{2}&= -8\pi (p + p_{T}). \end{aligned}$$
(25)

where \(\rho \), p, \(\rho _{T}\), and \(p_{T}\) denote energy density of matter, the pressure of the matter, the energy density of RHDE fluid and pressure of RHDE fluid, respectively.

Differentiating Eq. (25) with respect to time and combining the resulting equation with Eq. (22), we obtain the following energy conservation equation

$$\begin{aligned} \dot{\rho } +3(\rho + p)H +\dot{\rho _{T}} + 3(\rho _{T} + p_{T})H = 0. \end{aligned}$$
(26)

Moreover, the field equations for metric (6) in the framework of \(f(R, T) = R + 2f(T)\) theory of gravity are read as

$$\begin{aligned} 3H^{2}&= \left( 8\pi + 2f_{T}\right) \rho + 2pf_{T} + f(T), \end{aligned}$$
(27)
$$\begin{aligned} 2\dot{H} + 3H^{2}&= -8\pi p + f(T). \end{aligned}$$
(28)

From Eqs. (27) and (28), we can pick out a dark energy component due to f(T), described by

$$\begin{aligned} \rho _{T}&= 2f_{T}\rho + 2p f_{T} + f(T), \end{aligned}$$
(29)
$$\begin{aligned} p_{T}&= -f(T). \end{aligned}$$
(30)

It is worthwhile to note that one can reconstruct f(RT) gravity from RHDE model by defining RHDE density in IR cutoff as \(\rho _{T} = \frac{3c_{1}^{2}}{8\pi L^{2}(1 + \pi \delta L^{2})}\) with \(c_{1}\) being a numerical constant. The parameters \(\delta \) and L denote a non-additive parameter and length of horizon, respectively.

Differentiating Eq. (27) with respect to time and combining the resulting equation with Eq. (28), we obtain

$$\begin{aligned}&(8\pi + 2f_{T})\dot{\rho } + 3\left[ (8\pi + 2f_{T})\rho + 8\pi p\right] H + 2(\rho + p)\dot{f_{T}} \nonumber \\&\quad + (2\dot{p} + 6pH + 1)f_{T} = 0. \end{aligned}$$
(31)

Since \(f(T) = \xi T\) which leads \(f_{T} = \frac{\partial f(T)}{\partial T} = \xi \) and \(\dot{f_{T}} = 0\), therefore, Eq. (31) leads to

$$\begin{aligned} (8\pi + 2\xi )\dot{\rho } + 3\left[ (8\pi + 2\xi )\rho + 8\pi p \right] H +(2\dot{p} + 6pH + 1)\xi = 0. \end{aligned}$$
(32)

From Eq. (32), it is clear that for \(\xi = 0\), Eq. (32) converts into the conservation equation of general relativity case as we have discussed in Sect. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K. Reexamining RHDE models in FRW Universe with two IR cutoff with redshift parametrization. Indian J Phys 96, 3355–3360 (2022). https://doi.org/10.1007/s12648-021-02253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02253-4

Keywords

Navigation