Skip to main content
Log in

Dynamical analysis of self-gravitating stars in f(R,T) gravity

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We study the factors affecting the stability of a locally isotropic spherical self-gravitating systems in f(R,T) gravity, where R is the Ricci curvature invariant and T is the trace of stress-energy tensor. Specifically, the collapse equation is obtained from conservation laws with non-null expansion scalar at Newtonian and post-Newtonian approximations. Initially, we consider the hydrostatic phase of the system which upon radial perturbation provides linearized field equations. This approach gives rise to specific instability constraints to ensure the collapsing behavior of the spherical isotropic fluid distribution. Finally, we discuss the role played by matter variables in this perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Appendix

Appendix

The terms D0 and D1 mentioned in Eqs. (16) and (17) are given by

$$\begin{aligned} D_0 =&\frac{1}{f_R(R,T)} \biggl(\frac{2r}{H^2}-\frac{A'}{A}-\frac{H'}{H} -\frac{2AA'}{H^2} \biggr) \\ &{}\times\biggl[f_{RRR}\dot{R}R'+2f_{RRT}\bigl(R'\dot{T}+T'\dot{R}\bigr)+f_{RTT}T'\dot{T} \\ &{}+f_{RR} \biggl(\dot{R}'-\frac{A'\dot{R}}{A} -\frac{\dot{H}R'}{H} \biggr) \\ &{}+f_{RT} \biggl(\dot{T'}-\frac{A'\dot{T}}{A}-\frac{\dot{H}T'}{H} \biggr) \biggr] \\ &{}+\biggl[f_{RRR}\dot{R}R' +2f_{RRT}\bigl(R'\dot{T}+T'\dot{R}\bigr) \\ &{}+f_{RTT}T'\dot{T}+f_{RR} \biggl(\dot{R}'-\frac{A'\dot{R}}{A}-\frac{\dot{H}R'}{H} \biggr) \\ &{}+f_{RT} \biggl(\dot{T'}-\frac{A'\dot{T}}{A}-\frac{\dot{H}T'}{H} \biggr) \biggr]_{,1}+ \biggl[\frac{1}{f_R(R,T)} \\ &{}\times \biggl\{ \biggl(\frac{f(R,T)-Rf_R(R,T)}{2}\biggr)+f_{RRR} \frac{R'^2}{H^2} \\ &{}+2f_{RRT}\frac{R'H'}{H^2}+f_{RTT} \\ &{}\times\frac{T'^2}{H^2}+\frac{f_{RR}}{H^2} \biggl(\frac{2R'}{r} -\frac{R'H'}{H}-\frac{H\dot{R}\dot{H}}{A^2}+R''\biggr) \\ &{}+\frac{f_{RT}}{H^2} \biggl(\frac{2T'}{r}-\frac{T'H'}{H}-\frac{H\dot{T}\dot{H}}{A^2}+T''\biggr) \biggr\} \biggr]_{,0}A^2 \\ &{}-\frac{H\dot{H}}{f_R(R,T)}\biggl[f_{RRR} \biggl(\frac{R'^2}{H^2}+\frac{\dot{R}^2}{A^2} \biggr)+2\biggl(\frac{R'T'}{H^2} \\ &{}+\frac{\dot{R}\dot{T}}{A^2} \biggr)f_{RRT}+f_{RTT}\biggl( \frac{T'^2}{H^2}+\frac{\dot{T}^2}{A^2} \biggr) \\ &{}+f_{RR} \biggl(\frac{R''}{H^2} -\frac{R'H'}{H^3}-\frac{\dot{R}\dot{H}}{A^2H} \\ &{}-\frac{R'A'}{AH^2}+\frac{\ddot{R}}{A^2}-\frac{\dot{R}\dot{A}}{A^3} \biggr) \\ &{}+f_{RT} \biggl(\frac{T''}{H^2}+\frac{\ddot{T}}{A^2}-\frac{T'H'}{H^3} -\frac{\dot{T}\dot{H}}{A^2H}-\frac{\dot{T}\dot{A}}{A^3} \\ &{}-\frac{T'A'}{AH^2} \biggr) \biggr], \end{aligned}$$
(A.1)
$$\begin{aligned} D_1 =& \biggl[\frac{1}{f_R(R,T)} \biggl\{ f_{RRR}\dot{R}R'+2f_{RRT}\bigl(R'\dot{T}+T'\dot{R}\bigr) \\ &{}+f_{RTT}T'\dot{T}+f_{RR}\biggl(\dot{R}'-\frac{A'\dot{R}}{A}-\frac{\dot{H}R'}{H} \biggr) \\ &{}+f_{RT} \biggl(\dot{T'}-\frac{A'\dot{T}}{A}-\frac{\dot{H}T'}{H} \biggr) \biggr\} \biggr]_{,0}-\frac{1}{f_R(R,T)} \\ &{}\times \biggl(\frac{\dot{A}}{A}+\frac{\dot{H}}{H}+\frac{2H\dot{H}}{A^2} \biggr) \biggl[f_{RRR}\dot{R}R' \\ &{}+2f_{RRT}\bigl(R'\dot{T} +T'\dot{R}\bigr)+f_{RTT}T'\dot{T} \\ &{}+f_{RR} \biggl(\dot{R}'-\frac{A'\dot{R}}{A}-\frac{\dot{H}R'}{H} \biggr) \\ &{}+f_{RT} \biggl(\dot{T'}-\frac{A'\dot{T}}{A}-\frac{\dot{H}T'}{H} \biggr) \biggr]-\frac{AA'}{f_R(R,T)} \\ &{}\times \biggl[f_{RRR} \biggl(\frac{R'^2}{H^2}+\frac{\dot{R}^2}{A^2} \biggr) +2 \biggl(\frac{R'T'}{H^2}+\frac{\dot{R}\dot{T}}{A^2}\biggr)f_{RRT} \\ &{}+f_{RTT} \biggl( \frac{T'^2}{H^2}+\frac{\dot{T}^2}{A^2} \biggr) \\ &{}+f_{RR} \biggl(\frac{R''}{H^2}-\frac{R'H'}{H^3}-\frac{\dot{R}\dot{H}}{A^2H}+\frac{\ddot{R}}{A^2}-\frac{\dot{R}\dot{A}}{A^3}\biggr) \\ &{}+f_{RT} \biggl(\frac{T''}{H^2}+\frac{\ddot{T}}{A^2}-\frac{T'H'}{H^3} \\ &{}-\frac{\dot{T}\dot{H}}{A^2H}-\frac{\dot{T}\dot{A}}{A^3} -\frac{T'A'}{AH^2} \biggr) \biggr] \\ &{}+\frac{2r}{H^2} \biggl[f_{RRR}\frac{R'^2}{H^2} +2f_{RRT}\frac{R'{T'}}{H^2}+f_{RTT}\frac{T'^2}{H^2} \\ &{}+f_{RR} \biggl(\frac{R''}{H^2}-\frac{R'}{rH^2}-\frac{\dot{R}\dot{H}}{A^2H}-\frac{R'H'}{rH^2} \biggr) \\ &{}+f_{RT}\biggl(-\frac{\dot{T}\dot{H}}{A^2H} -\frac{H'{T'}}{H^3}+\frac{T''}{H^2}-\frac{T'}{rH^2} \biggr) \biggr] \\ &{}+H^2\biggl[\frac{1}{f_R(R,T)} \biggl\{ - \biggl(\frac{f(R,T)-Rf_R(R,T)}{2}\biggr) \\ &{}+f_{RRR}\frac{\dot{R}^2}{A^2}+2f_{RRT}\frac{\dot{R}\dot{T}}{A^2}+f_{RTT}\frac{\dot{T}^2}{A^2} \\ &{}+\frac{f_{RR}}{A^2} \biggl(\ddot{R} -\frac{\dot{R}\dot{A}}{A}-\frac{A{R'A'}}{H^2} -\frac{2A^2R'}{rH^2} \biggr) \\ &{}+\frac{f_{RT}}{A^2} \biggl(\ddot{T}-\frac{\dot{A}\dot{T}}{A}-\frac{AA'T'}{H^2}-\frac{2A^2{T'}}{rH^2} \biggr) \biggr\} \biggr]_{,1}. \end{aligned}$$
(A.2)

Under hydrostatic phase, the component of Eq. (29) is given by

$$\begin{aligned} D_{1S} =&-\frac{2{\epsilon}A_0A'_0}{(1+2{\epsilon}R_0)} \biggl(\frac{R''_0}{H_0^2}-\frac{R'_0H'_0}{H_0^3} \biggr) \\ &{} +\frac{4r{\epsilon}}{(1+2{\epsilon}R_0)} \biggl(\frac{R''_0}{H_0^2}-\frac{R'_0}{rH_0^2}-\frac{R'_0H'_0}{rH_0^2} \biggr) \\ &{}+H_0^2 \biggl[\frac{1}{(1+2{\epsilon}R_0)} \biggl\{ \frac{{\lambda}T_0-{\epsilon}R_0^2}{2}-\frac{2{\epsilon}}{A_0^2} \biggl(\frac{A_0R'_0A'_0}{H_0^2} \\ &{}-\frac{2A_0^2R'_0}{rH_0^2} \biggr) \biggr\} \biggr]_{,1}. \end{aligned}$$
(A.3)

The radial dependent portion \(\mathcal{P}_{0}\) is given by

$$\begin{aligned} \mathcal{P}_0 =&\frac{2{\epsilon}}{H_0^2} \biggl(\frac{A'_0}{ A_0}-\frac{1}{r^2} \biggr)+\frac{2(1+2{\epsilon}R_0)}{rH_0^2} \biggl\{ \biggl(\frac{a}{A_0} \biggr)' \\ &{}-\frac{2hA'_0}{H_0A_0} + \frac{2h}{rH_0} \biggr\} -\frac{2{\epsilon}}{r^2}+e{\epsilon}R_0 \\ &{}+\frac{2{\epsilon}}{H_0^2} \biggl[\frac{e'A'_0}{A_0}+R'_0 \biggl\{ \biggl(\frac{a}{A_0} \biggr)'-\frac{2hA'_0}{H_0A_0}\biggr\} \biggr] \\ &{}+\frac{4{\epsilon}R'_0}{rH_0^2} \biggl( \frac{e'}{R'_0}- \frac{2h}{H_0} \biggr)-\frac{2{\epsilon}e\omega^2}{A_0^2}. \end{aligned}$$
(A.4)

The component of Eq. (31) is

$$\begin{aligned} D_2 =&\frac{2\epsilon}{(1+2{\epsilon}R_0)} \biggl(\frac{2r}{H_0^2} -\frac{A'_0}{A_0}-\frac{H'_0}{H_0}-\frac{2A_0A'_0}{H_0^2} \biggr) \\ &{}\times\biggl(e'-\frac{eA'_0}{A_0}-\frac{hR'_0}{H_0} \biggr) \\ &{}+ \biggl[\biggl(e'-\frac{eA'_0}{A_0}-\frac{hR'_0}{H_0} \biggr)\frac{2\epsilon}{(1+2{\epsilon}R_0)} \biggr]' \\ &{}+\frac{A_0^2}{(1+2{\epsilon}R_0)} \biggl[\frac{{\lambda}T_0-{\epsilon}R_0^2}{2} \\ &{}+\frac{2{\epsilon}}{H_0^2} \biggl(\frac{2R'_0}{r}-\frac{R'_0H'_0}{H_0}+R''_0\biggr)-\frac{2{\epsilon}h}{H_0(1+2{\epsilon}R_0)} \\ &{}\times\biggl(R''_0-\frac{R'_0H'_0}{H_0}-\frac{R'_0A'_0}{A_0} \biggr) \biggr]. \end{aligned}$$
(A.5)

The quantity Φ which is common in both second dynamical equation (32) as well as in collapse equation (36) is mentioned as below

$$\begin{aligned} \varPhi =& \biggl[-\frac{2{\epsilon}}{(1+2{\epsilon}R_0)}+\frac{P_0}{(1+2{\epsilon}R_0)^2} \biggl\{ -A_0A'_0(1+2{\epsilon}R_0) \\ &{}\times\biggl(\frac{a}{A_0}+\frac{a'}{A'_0}+\frac{2\epsilon}{(1+2{\epsilon}R_0)} \biggr) +2e'\epsilon \biggr\} \\ &{}-\frac{4\epsilon}{(1+2{\epsilon}R_0)^3} \bigl\{ 2{\epsilon}R'_0-A_0A'_0(1+2{\epsilon}R_0) \bigr\} \\ &{}-\biggl(\frac{a}{A_0}+\frac{a'}{A'_0}-\frac{2{\epsilon}}{(1+2{\epsilon}R_0)} \biggr) \\ &{}+\frac{H_0^2T'_0}{2(1-\lambda)} \biggl(\frac{z'}{T'_0}+\frac{2h}{H_0} \biggr)+\frac{{\epsilon}R_0^2-{\lambda}T_0}{2} \biggr] \\ &{}+ \biggl[\frac{2{\epsilon}A_0A'_0}{H_0^2(1+2{\epsilon}R_0)} \biggl\{ \biggl(R''_0-\frac{R'_0H'_0}{H_0} \biggr) \\ &{}\times \biggl(\frac{a}{A_0}+\frac{a'}{A'_0} -\frac{2{\epsilon}}{(1+2{\epsilon}R_0)} \biggr)+R''_0 \biggl(\frac{e''}{R''_0} -\frac{2h}{H_0}\biggr) \\ &{}-R'_0 \biggl\{ \frac{e'H'_0}{H_0R'_0}+ \biggl(\frac{h}{H_0} \biggr)'-\frac{2hH'_0}{H_0^2} \biggr\} \biggr\} + \frac{4{\epsilon}r}{H_0^2(1+2{\epsilon}R_0)} \\ &{}\times \biggl\{ R''_0\biggl(\frac{e''}{R''_0}-\frac{2h}{H_0} \biggr)-\frac{1}{r}\biggl(e'-\frac{2hR'_0}{H_0} \biggr) \\ &{}+\frac{H_0^2R'_0}{r} \biggl(\frac{h}{H_0} \biggr)'-\frac{hR'_0H'_0}{r} \\ &{}+\frac{e'H'_0}{r}-2\epsilon \biggl(R''_0-\frac{R'_0}{r} -\frac{R'_0H'_0}{r} \biggr) \biggr\} \\ &{}+\frac{2hH_0}{(1+2{\epsilon}R_0)}\biggl\{ \frac{{\epsilon}R_0^2-{\lambda}T_0}{2}-\frac{2\epsilon}{H_0^2}\biggl(\frac{A'_0R'_0}{A_0}+\frac{2R'_0}{r}\biggr) \biggr\} \\ &{}+\frac{2{\epsilon}H_0^2}{(1+2{\epsilon}R_0)} \biggl\{ \frac{eR_0}{2}-\frac{R'_0}{H_0^2} \biggl\{ \biggl(\frac{a}{A_0} \biggr)' -\frac{2hA'_0}{A_0H_0} \biggr\} \\ &{}-\frac{1}{H_0^2} \biggl(\frac{e'A'_0}{A_0} -\frac{4hR'_0}{rH_0}+\frac{2e'}{r} \biggr) \biggr\} \\ &{}+\frac{2{\epsilon}}{H_0^2}\biggl(\frac{R_0A'_0}{A_0} +\frac{2R'_0}{r} \biggr) \biggr]. \end{aligned}$$
(A.6)

The entity ω2 described in Eq. (30) is as follows

$$\begin{aligned} \omega^2(r) =&\frac{A_0^2H_0}{h} \biggl[e+\frac{4h}{H_0^3} \biggl\{ \frac{A'_0}{A_0} \biggl(\frac{2}{r}-\frac{H'_0}{H_0} \biggr)-\frac{2H'_0}{H_0r} \\ &{}+\frac{A''_0}{A_0}+\frac{1}{r^2} \biggr\} -\frac{2}{H_0^2} \biggl\{ \biggl(\frac{a}{A_0} \biggr)'\biggl(\frac{2}{r}-\frac{H'_0}{H_0}\biggr)-\frac{a''}{A_0} \\ &{}-\frac{aA''_0}{A_0^2}- \biggl(\frac{h}{H_0}\biggr)' \biggl(\frac{A'_0}{A_0}+\frac{2}{r} \biggr) \biggr\} \biggr]. \end{aligned}$$
(A.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Yousaf, Z. Dynamical analysis of self-gravitating stars in f(R,T) gravity. Astrophys Space Sci 354, 471–479 (2014). https://doi.org/10.1007/s10509-014-2113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-014-2113-6

Keywords

Navigation