Skip to main content
Log in

Noise-enhanced stability and resonance effect of a termolecular enzymatic reaction

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Here, we investigate an enzymatic reaction system subjected to additive and multiplicative noises and a weak periodic signal. By means of numerical simulations, we find that structure of stationary probability distribution function changes from one peak to two peaks by regulating not only the noise intensities (i.e., noise-induced transition), but also system parameters. The mean first passage time as a function of the multiplicative noise intensity exhibits a maximum, showing that the noise can enhance stability of the system. Moreover, by using the two-states theory, analytically expression of signal-to-noise ratio (SNR) of the system in the adiabatic limit is derived. The results indicate that: (1) The SNR as a function of noise intensity exhibits a maximal value, i.e., a stochastic resonance (SR) phenomenon; (2) as the noise intensities remain unchanged, the curve of the SNR with respect to the parameters of the system displays a peak, i.e., a SR-like phenomenon. Because the noise and the parameters reflect, respectively, temperature and rates of the enzymatic reactions, choosing optimal temperature and rates can enhance response of the system. This findings will be beneficial for controlling enzymatic reaction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R Benzi, A Sutera, A Vulpiani J. Phys. A 14 L453 (1981)

    Article  ADS  Google Scholar 

  2. R Benzi, A Sutera, A Vulpiani Tellus. 34 10 (1982)

    Article  ADS  Google Scholar 

  3. J M G Vilar and R V Solé Phys. Rev. Lett. 80 4099 (1998)

    Article  ADS  Google Scholar 

  4. L R Nie, D C Mei Phys. Rev. E; 77 031107 (2008)

  5. D Valenti, A Fiasconaro, B Spagnolo Physica A 331 477 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. B Spagnolo, A La Barbera Physica A 315 114 (2002)

    Article  ADS  Google Scholar 

  7. W R Zhong, Y Z Shao, Z H He Phys. Rev. E 73 060902 (2006)

    Article  ADS  Google Scholar 

  8. H Y Li, X J Sun, J H Xiao Chaos 28 043113 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. O Van Der Groen, M F Tang, N Wenderoth, J B Mattingley Plos Comput. Biol. 14 e1006301 (2018)

    Article  Google Scholar 

  10. S Spezia et al. Eur. Phys. J. B 65 453 (2008)

  11. E Lanzara, R N Mantegna, B Spagnolo, and R Zangara Am. J. Phys. 65 341 (1997)

  12. R N Mantegna, B Spagnolo, M Trapanese Phys. Rev. E 63 011101 (2001)

    Article  ADS  Google Scholar 

  13. R N Mantegna, B Spagnolo Phys. Rev. E 49 R1792 (1994)

    Article  ADS  Google Scholar 

  14. L Viola, E Knill, S Lloyd Phys. Rev. Lett. 82 2417 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. T Wellens, A Buchleitner Chem. Phys. 268 131 (2001)

    Article  Google Scholar 

  16. A N Pisarchik , R Corbalán Phys. Rev. E 58 2697(R) (1998)

    Article  ADS  Google Scholar 

  17. L M Chen, L Cao, D J Wu Chin. Phys. 16 123 (2007)

    Article  Google Scholar 

  18. J Wang, L Cao, D J Wu Chin. Phys. 13 1811 (2006)

    ADS  Google Scholar 

  19. J H Li, Y X Han Phys. Rev. E 74 051115 (2006)

    Article  ADS  Google Scholar 

  20. P S Burada, G Schmid, D Reguera Phys. Rev. Lett. 101 130602 (2008)

    Article  ADS  Google Scholar 

  21. V M Gandhimathi, S Rajasekar, J Kurths Phys. Rev. A 360 279 (2006)

    Google Scholar 

  22. J H Li, J Luczka Phys. Rev. E 82 041104 (2010)

    Article  ADS  Google Scholar 

  23. S Yoshiharu, A Naoki Phys. Rev. E 97 012217 (2018)

    Article  Google Scholar 

  24. R Y Chen, L R Nie Indian J. Phys. 91 973 (2017)

    Article  ADS  Google Scholar 

  25. R Y Chen, L L Pan, L R Nie, C Y Chen, C H Zeng, S F Liu Indian J. Phys. 93 115 (2019)

    Article  ADS  Google Scholar 

  26. Y Jia, S N Yu and J R Li Phys. Rev. E 62 1869 (2000)

  27. Y Jia, X P Zheng, X M Hu and J R Li Phys. Rev. E 63 031107 (2001)

  28. D S Hogness Rev. Mod. Phys. 31 256 (1959)

  29. R A Alberty Rev. Mod. Phys. 31 177 (1959)

  30. S Pressé, K Ghosh, R Phillips, K A Dill Phys. Rev. E 82 031905 (2010)

    Article  ADS  Google Scholar 

  31. J E Masterson, S D Schwartz Chem. Phys. 442 132 (2014)

    Article  Google Scholar 

  32. N G Conradi, A Sj\(\rm {\ddot{o}}\)str\(\rm {\ddot{o}}\)m Acta Physiol. 136 589 (1989)

  33. S Panja, D J Adams Chem. Commun. 55 47 (2019)

    Article  Google Scholar 

  34. L F Yang, A M Zhabotinsky, I R Epstein Phys. Rev. Lett. 92 198303 (2004)

    Article  ADS  Google Scholar 

  35. A F\(\rm {\ddot{o}}\)rster, M Merget, F W Schncider J. Phys. Chem. 100 4442 (1996)

  36. Lan Y H,Papoian G A Phys. Rev. Lett. 98 228301 (2007)

  37. X J Zhang, H Qian, M Qian Phys. Rep. 510 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  38. T Y Shen, K Tai, J A McCammon Phys. Rev. E 63 041902 (2001)

    Article  ADS  Google Scholar 

  39. J A Tuszyński, J M Dixon Phys. Rev. E 64 051915 (2001)

    Article  ADS  Google Scholar 

  40. S Saha, S Ghose, R Adhikari, A Dua Phys. Rev. Lett. 107 218301 (2011)

    Article  ADS  Google Scholar 

  41. D Valenti, L Tranchina, M Brai, A Caruso, C Cosentino, B Spagnolo Ecol. Model. 213 449 (2008)

    Article  Google Scholar 

  42. D Valenti, L Schimansky-Geier, X Sailer, B Spagnolo Eur. Phys. J. B 50 199 (2006)

    Article  ADS  Google Scholar 

  43. A A Dubkov, B Spagnolo Eur. Phys. J. B 65 361 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. O A Chichigina, A A Dubkov, D Valenti, B Spagnolo Phys. Rev. E 84 021134 (2011)

    Article  ADS  Google Scholar 

  45. A Fiasconaro, A Ochab-Marcinek, B Spagnolo, E Gudowska-Nowak Eur. Phys. J. B 65 435 (2008)

    Article  ADS  Google Scholar 

  46. T Biancalani, D Fanelli, F D Patti Phys. Rev. E 81 046215 (2010)

    Article  ADS  Google Scholar 

  47. T Biancalani, T Galla, A J McKane Phys. Rev. E 84 026201 (2011)

    Article  ADS  Google Scholar 

  48. B Spagnolo et al. Chaos Solitons and Fractals 81 412 (2015)

  49. D Valenti, L Magazzù, P Caldara, B Spagnolo Phys. Rev. B 91 235412 (2015)

    Article  ADS  Google Scholar 

  50. B Spagnolo, C Guarcello, L Magazzù,A Carollo, D Valenti Entropy 19 20 (2017)

    Article  ADS  Google Scholar 

  51. A Fiasconaro, D Valenti, B Spagnolo Physica A 325 136 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  52. Zhong S, Xin H W J. Phys. Chem. A 104 297 (2000)

    Article  ADS  Google Scholar 

  53. M Schienbein, H Gruler Phys. Rev. E 56 7116 (1997)

    Article  ADS  Google Scholar 

  54. S Bouzat, H S Wio Phys. Rev. E 59 5142 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and technology project of Jiangxi provincial education department (Grant No. GJJ191153), Pingxiang University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruyin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, X. & Chen, R. Noise-enhanced stability and resonance effect of a termolecular enzymatic reaction. Indian J Phys 96, 1887–1894 (2022). https://doi.org/10.1007/s12648-021-02098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02098-x

Keywords

Navigation