Skip to main content
Log in

On the fractional order space-time nonlinear equations arising in plasma physics

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, the \(\exp (-\phi (\xi ))\)-expansion function method is considered for solving two classes of space-time fractional partial differential equations of very special interest. The two classes, namely the higher dimensional Kadomtsev–Petviashvili and Boussinesq equations, have a wide range applications in different areas of complex nonlinear physics such as plasma physics, fluid dynamics and nonlinear optics. As a result, the \(\exp (-\phi (\xi ))\)-expansion function method yields a different class of traveling solutions mapped to trigonometric functions, rational functions and hyperbolic functions. Also, the behavior of these solutions has been significantly affected by changing the values of fractional order where the obtained solutions go back to those obtained previously to the normal case, i.e.,\(\alpha =\beta =1\). Finally, our finding may be of wide relevance and helpful to better understand the main features and propagation of the nonlinear waves in fractal medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Horonyi Astron. Astrophys. 34 383–418 (1996)

    Article  ADS  Google Scholar 

  2. F Verheest Space Sci. Rev. 77(3–4) 267–302 (1996)

    ADS  Google Scholar 

  3. P K Shukla and A A Mamun Inst. Phys. Bristol (2002)

  4. D A Mendis and M Rosenberg Astron. Astrophys. 32 419–463 (1994)

    Article  ADS  Google Scholar 

  5. N Akhtar, S Mahmood and H Saleem Phys. Lett. A 361 126 (2007)

    Article  ADS  Google Scholar 

  6. J R Asbridge, S J Bame and I B Strong J. Geophys. Res. 73 5777 (1968)

    Article  ADS  Google Scholar 

  7. W C Feldman, S J Anderson, S J Bame, S P Gary, J T Gosling, D J McComas, M F Thomsen, G Paschmann and M M Hoppe J. Geophys. Res. Space Phys. 88 96 (1983)

    Article  ADS  Google Scholar 

  8. R Lundlin, A Zakharov, R Pellinen, H Borg, B Hultqvist, N Pissarenko, E M Dubinin, S W Barabash, I Liede and H Koskinen Nature 341 609 (1998)

    Google Scholar 

  9. Y Futaana,S Machida, Y Saito, A Matsuoka and H Hayakawa J. Geophys. Res. 108 15 (2003)

    Google Scholar 

  10. S A Elwakil, A Elgarayhi, E K El-Shewy, A A Mahmoud and M A El-Attafi Astrophys. Space Sci. 343 661 (2013)

    Article  ADS  Google Scholar 

  11. Y Nakamura and A Sarma Phys. Plasmas 8 3921 (2001)

    Article  ADS  Google Scholar 

  12. S S Duha, M G M Anowar and A A Mamun Phys. Plasmas 17 03711 (2010)

    Article  Google Scholar 

  13. K B Oldman and J Spanier It The Fractional Calculus (New York: Academic Press) (1974)

    Google Scholar 

  14. R Hilfer Applications of Fractional Calculus in Physics (Singapore: World Scientific) (2000)

    Book  MATH  Google Scholar 

  15. A A Kilbas, H M Srivastava and J Trujillo Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier) (2006)

    Google Scholar 

  16. M D Ortigueira Fractional Calculus for Scientists and Engineers Springer Mathematics (2011)

  17. D Baleanu, K Diethelm, E Scalas and J J Trujillo (Boston: World Scientific) (2012)

  18. I Podlubny Fractional Differential Equations, Mathematics in Science and Engineering (San Diego, CA: Academic Press) (1999)

    MATH  Google Scholar 

  19. Z Dahmani, M M Mesmoudi and R Bebbouchi Theor. Differ. Equ. 31 1 (2008)

    Google Scholar 

  20. G Jumarie Comput. Math. Appl. 51 1367 (2006)

    Article  MathSciNet  Google Scholar 

  21. G Jumarie Appl. Math. Lett. 22 378 (2009)

    Article  MathSciNet  Google Scholar 

  22. R Cimpoiasu and R Constantinescu Nonlinear Anal. Ser. A Theory Methods Appl. 68 2261 (2008)

    Article  MATH  Google Scholar 

  23. R Cimpoiasu and R Constantinescu Nonlinear Anal. Ser A Theor. Methods Appl. 57 147 (2010)

    Article  MATH  Google Scholar 

  24. S Zhang, Q A Zong, D Liu and Q Gao Commun. Fract. Calculus 1 48 (2010)

    Google Scholar 

  25. B Lu J. Math. Anal.Appl. 395 684 (2012)

    Article  Google Scholar 

  26. L Bin Commun. Theor. Phys. 58 623 (2012)

    Article  Google Scholar 

  27. K A Gepreel and S Omran Chin. Phys. B 21 110204 (2012)

    Article  Google Scholar 

  28. S S Ray and R K Bera Appl. Math. Comput. 167 561 (2005)

    MathSciNet  Google Scholar 

  29. S Zhang and H Q Zhang Phys. Lett. A 375 1069 (2011)

    Article  ADS  Google Scholar 

  30. J Zhao, B Tang, S Kumar and Y Hou Math. Probl. Eng. https://doi.org/10.1155/2012/924956 (2012)

  31. B Tong, Y He, L Wei and X Zhang Phys. Lett. A 376 2588 (2012)

    Article  ADS  Google Scholar 

  32. S Guo, L Mei, Y Li, Y Sun Phys. Lett. A 376 407 (2012)

    Article  ADS  Google Scholar 

  33. L Bin Phys. Lett. A 376 2045 (2012)

    Article  MathSciNet  Google Scholar 

  34. M Cui J. Comput. Phys. 228 7792 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. Q Hung,G Huang and H Zhan Adv. Water Resour. 31 1578 (2008)

    Article  ADS  Google Scholar 

  36. M A Abdou, A Elgarayhi and E El Shewy Nonlinear Sci. Lett. A 5 31 (2014)

    Google Scholar 

  37. M A Abdou and A Elhanbaly Nonlinear Sci. Lett. A 6 10 (2015)

    Google Scholar 

  38. A Elgarayhi, M A Abdou and A T Attia Nonlinear Sci. Lett. A 5 35 (2014)

    Google Scholar 

  39. M A Abdou and A Yildirim Int. J. Numer. Methods Heat Fluid Flow 22 829 (2012)

    Article  Google Scholar 

  40. M N Alam, M G Hafez, M A Akbar and H O Roshid J. Sient. Res. 7 1 (2015)

    Article  Google Scholar 

  41. M Kaplan and A Bekir Optik 12 8209 (2016)

    Article  ADS  Google Scholar 

  42. H O Roshid and Md A Rahman Res. Phys. 4 150 (2014)

    Google Scholar 

  43. M A Abdou J. Oce. Eng. Sci. 2 1 (2017)

    Google Scholar 

  44. M A Abdou and A A Soliman Results iPhys. 9 1497 (2018)

    Article  ADS  Google Scholar 

  45. M A Abdou, A A Soliman, A Biswas, M Ekic and S P Moshokoa Optik 171 463 (2018)

    Article  ADS  Google Scholar 

  46. M A Abdou Wave Random Complex Media. https://doi.org/10.1080/17455030.2018.1517951

  47. M A Abdou Int. J. Nonlinear Sci. 26(2) 89 (2018)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Abdou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, M.A. On the fractional order space-time nonlinear equations arising in plasma physics. Indian J Phys 93, 537–541 (2019). https://doi.org/10.1007/s12648-018-1342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1342-x

Keywords

PACS Nos.

Navigation