Skip to main content
Log in

Nonlinear Schrödinger equation and classical-field description of thermal radiation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

It is shown that the thermal radiation can be described without quantization of energy in the framework of classical field theory using the nonlinear Schrödinger equation which is considered as a classical field equation. Planck’s law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived without using the concept of the energy quanta. It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck’s law, but depends weakly on the nature of atoms, while Planck’s law is valid only as an approximation in the limit of weak excitation of atoms. Spin and relativistic effects are not considered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W E Lamb and M O Scully Polarization, Matter and Radiation. Jubilee volume in honour of Alfred Kasiler (Paris: Press of University de France) p 363 (1969)

  2. A O Barut and J F Van Huele Phys. Rev. A 32 (6) 3187 (1985)

    Article  ADS  Google Scholar 

  3. C R Stroud Jr and E T Jaynes Phys. Rev. A 1 (1) 106 (1970)

    Article  ADS  Google Scholar 

  4. M D Crisp and E T Jaynes Phys. Rev. 179 (5) 1253 (1969)

    Article  ADS  Google Scholar 

  5. A O Barut and J P Dowling Phys. Rev. A 41 (5) 2284 (1990)

    Article  ADS  Google Scholar 

  6. R K Nesbet Phys. Rev. A 4 (1) 259 (1971)

    Article  ADS  Google Scholar 

  7. M O Scully and M S Zubairy Quantum Optics (Cambridge: Cambridge University Press) (1997)

    Book  MATH  Google Scholar 

  8. P A M Dirac Proc. R. Soc Lond. A 111 (758) 405 (1926)

    Article  ADS  Google Scholar 

  9. P A M Dirac Proc. Camb. Philos. Soc. 23 (05) 500 (1926)

    Article  ADS  Google Scholar 

  10. W Gordon Zeit. f. Phys. 40 (1) 117 (1926)

    Article  ADS  Google Scholar 

  11. O Klein, Y Nishina Z. Phys. 52 (11–12) 853 (1929)

    Article  ADS  Google Scholar 

  12. O Klein, Y Nishina The Oskar Klein Memorial Lectures: 19881999 1 253 (2014)

    Google Scholar 

  13. E Schrödinger Ann. Physik 387 (2) 257 (1927)

    Article  Google Scholar 

  14. E M Purcell Nature (London) 178 1449 (1956)

    Article  ADS  Google Scholar 

  15. L Mandel Prog. Opt. 2 181 (1963)

    Article  Google Scholar 

  16. H Haken and H Sauermann Z. Phys. 173 (2) 261 (1963)

    Article  ADS  Google Scholar 

  17. W E Lamb Jr Phys. Rev. 134 (6A) A1429 (1964)

    Article  ADS  Google Scholar 

  18. S A Rashkovskiy Quantum Stud. Math. Found. 3 (2) 147 (2016)

  19. S A Rashkovskiy Proc. SPIE. 9570, The Nature of Light: What are Photons? VI 95700G (2015)

  20. S A Rashkovskiy Prog. Theor. Exp. Phys. 123A03 (2015)

  21. S A Rashkovskiy Quantum Stud. Math. Found. 4 (1) 29 (2017)

  22. S A Rashkovskiy Indian J. Phys. 91 (6) 607 (2017)

    Article  ADS  Google Scholar 

  23. S A Rashkovskiy Prog. Theor. Exp. Phys. 013A03 (2017)

  24. S A Rashkovskiy arXiv:1603.02102 [physics.gen-ph] (2016)

  25. L D Landau and E M Lifshitz The Classical Theory of Fields Vol 2, 4th edn. (Butterworth-Heinemann) (1975)

  26. O Lummer and E Pringsheim Annalen der Physik 311 (9) 192 (1901)

    Article  ADS  Google Scholar 

  27. V B Berestetskii, E M Lifshitz and L P Pitaevskii Quantum Electrodynamics, Vol 4, 2nd edn. (Butterworth-Heinemann) (1982)

  28. M Planck Annalen der physik 342 (4) 642 (1912)

    Article  ADS  Google Scholar 

  29. Y Couder and E Fort Phys. Rev. Lett. 97 (15) 154101 (2006)

    Article  ADS  Google Scholar 

  30. A Eddi, E Fort, F Moisy and Y Couder Phys. Rev. Lett. 102 (24) 240401 (2009)

    Article  ADS  Google Scholar 

  31. E Fort, A Eddi, A Boudaoud, J Moukhtar and Y Couder Proc. Natl. Acad. Sci. USA 107 (41) 17515 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Tomsk State University competitiveness improvement program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Rashkovskiy.

Appendix

Appendix

Using the spectral energy density of radiation (90), the Stefan–Boltzmann constant is defined by the expression

$$\sigma = \frac{{k^{4} }}{{\hbar^{3} \pi^{2} c^{3} }}\mathop \int \limits_{0}^{\infty } \frac{{x^{3} }}{{\left[ {\exp \left( x \right) - 1} \right]\left[ {1 + \exp \left( { - x} \right)} \right]}}dx$$
(99)

Let us calculate the integral in the expression (99). Obviously,

$$\mathop \int \limits_{0}^{\infty } \frac{{x^{3} }}{{\left[ {\exp \left( x \right) - 1} \right]\left[ {1 + \exp \left( { - x} \right)} \right]}}dx = \mathop \int \limits_{0}^{\infty } \frac{{x^{3} \exp \left( { - x} \right)}}{{\left[ {1 - \exp \left( { - 2x} \right)} \right]}}dx = \mathop \int \limits_{0}^{\infty } x^{3} \mathop \sum \limits_{n = 0}^{\infty } e^{{ - \left( {2n + 1} \right)x}} dx = \mathop \sum \limits_{n = 0}^{\infty } \frac{1}{{\left( {2n + 1} \right)^{4} }}\mathop \int \limits_{0}^{\infty } y^{3} e^{ - y} dy = \frac{{\pi^{4} }}{16}$$
(100)

because the last integral in expression (100) is equal to 6, and

$$\mathop \sum \limits_{n = 0}^{\infty } \frac{1}{{\left( {2n + 1} \right)^{2p} }} = \frac{{2^{2p} - 1}}{{2 \cdot \left( {2p} \right)!}}B_{p}$$

where \(p = 1,2,3, \ldots\); \(B_{p}\) are the Bernoulli numbers; in particular \(B_{2} = 1/30\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashkovskiy, S.A. Nonlinear Schrödinger equation and classical-field description of thermal radiation. Indian J Phys 92, 289–302 (2018). https://doi.org/10.1007/s12648-017-1112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1112-1

Keywords

PACS Nos.

Navigation