Skip to main content
Log in

Study of shape evolution and electromagnetic properties in neutron-rich Zr and Sr isotopes

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The projected shell model calculations have been carried out in neutron-rich 100–108Zr and 98–102Sr isotopes. The shape evolution and electromagnetic properties have been examined in neutron-rich Zr and Sr isotopes around N = 60. The structure of yrast states, backbending phenomena, g-factors and B(E2) transition probabilities are calculated and compared with corresponding observable quantities. The present calculations predict the occurrence of coexistence of prolate-oblate shapes at 0+ state in 100,102Zr and 98,100Sr. Nuclei beyond N = 62 are predicted to have prolate deformation in the ground-state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E Chiefetz, R C Jared, S G Thompson and J B Wilhelmy Phys. Rev. Lett. 25 38 (1970)

    Article  ADS  Google Scholar 

  2. P Federman and S Pittel Phys. Lett. B 69 385 (1977)

    Article  ADS  Google Scholar 

  3. P Federman and S Pittel Phys. Lett. B 77 29 (1978)

    Article  ADS  Google Scholar 

  4. P Federman, S Pittel, and R Campos Phys. Lett. B 82 9 (1979)

    Article  ADS  Google Scholar 

  5. P Federman and S Pittel Phys. Rev. C 20 820 (1979)

    Article  ADS  Google Scholar 

  6. S Pittel Nucl. Phys. A 347 417 (1980)

    Article  ADS  Google Scholar 

  7. P Bonche, H Flocard, P H Heenen, S J Krieger and M S Weiss Nucl. Phys. A 443 39 (1985)

    Article  ADS  Google Scholar 

  8. X Campi and M Epherre Phys. Rev. C 22 2605 (1980)

    Article  ADS  Google Scholar 

  9. T R Werner, J Dobaczewski, M W Guidry, W Nazarewicz and J A Sheikh Nucl. Phys. A 578 1 (1994)

    Article  ADS  Google Scholar 

  10. J Xiang, Z P Li, Z X Li, J M Yao and J Meng Nucl. Phys. A 873 1 (2012)

    Article  ADS  Google Scholar 

  11. H Mei, J Xiang, J M Yao, Z P Li and J. Meng Phys. Rev. C 85 034321 (2012)

    Article  ADS  Google Scholar 

  12. M Bender et al. Phys. Rev. C 80 064302 (2009)

    Article  ADS  Google Scholar 

  13. R Rodriguez-Guzman, P Sarriguren, L M Robledo and S Perez-Martin Phys. Lett. B 691 202 (2010)

    Article  ADS  Google Scholar 

  14. S Raman, C W Nestor Jr., and P Tikkanen At. Data Nucl. Data Tables 78 1 (2001)

    Article  ADS  Google Scholar 

  15. J K Hwang et al. Phys. Rev. C 73 044316 (2006)

    Article  ADS  Google Scholar 

  16. T Sumikama et al. Phys. Rev. Lett. 106 202501 (2011)

    Article  ADS  Google Scholar 

  17. H Ohm, G Lhersonneau, K Sistemich, B Pfeiffer and K L Kratz Z. Phys. A 327 483 (1987)

    ADS  Google Scholar 

  18. G Lhersonneau, H Gabelmann, N Kaffrell, K L Kratz and B Pfeiffer (ISOLDE Collaboration) Z. Phys. A 332 243 (1989)

    ADS  Google Scholar 

  19. G Lhersonneau et al. (ISOLDE Collaboration) Z. Phys. A 337 143 (1990)

    ADS  Google Scholar 

  20. H Mach et al. Nucl. Phys. A 523 197 (1991)

    Article  ADS  Google Scholar 

  21. C Goodin et al. Nucl. Phys. A 787 231 (2007)

    Article  ADS  Google Scholar 

  22. W Urban et al. Nucl. Phys. A 689 605 (2001)

    Article  ADS  Google Scholar 

  23. NNDC, Brookhaven National Laboratory, http://www.nndc.bnl.gov/.

  24. U Hager et al. Phys. Rev. Lett. 96 042504 (2006)

    Article  ADS  Google Scholar 

  25. P Campbell et al. Phys. Rev. Lett. 89 082501 (2002)

    Article  ADS  Google Scholar 

  26. G Jung et al. Phys. Rev. C 22 252 (1980)

    Article  ADS  Google Scholar 

  27. F Schussler et al. Nucl. Phys. A 339 415 (1980)

    Article  ADS  Google Scholar 

  28. H Hua et al. Phys. Rev. C 69 014317 (2004)

    Article  ADS  Google Scholar 

  29. J K Hwang et al. Phys. Rev. C 74 017303 (2006)

    Article  ADS  Google Scholar 

  30. S Mukhopadhyay et al. Phys. Rev. C 85 064321 (2012)

    Article  ADS  Google Scholar 

  31. E Y Yeoh et al. Phys. Rev. C 82 027302 (2010)

    Article  ADS  Google Scholar 

  32. A Navin et al. Phys. Lett. B 728 136 (2014)

    Article  ADS  Google Scholar 

  33. D Kameda et al. Phys. Rev. C 86 054319 (2012)

    Article  ADS  Google Scholar 

  34. R E Azuma et al. Phys. Lett. B 86 5 (1979)

    Article  ADS  Google Scholar 

  35. J H Hamilton et al. Prog. Part. Nucl. Phys. 35 635 (1995)

    Article  ADS  Google Scholar 

  36. B Singh and Z. Hu Nucl. Data Sheets 98 335 (2003)

    Article  ADS  Google Scholar 

  37. D De Frenne Nucl. Data Sheets 110 1745 (2009)

    Article  ADS  Google Scholar 

  38. A G Smith et al. Phys. Lett. B 591 55 (2004)

    Article  ADS  Google Scholar 

  39. F Browne et al. Acta Phys. Pol. B 46 721 (2015)

    Article  ADS  Google Scholar 

  40. H Mach, R L Gill and M Moszynski Nucl. Instrum. Methods Phys. Res. A 280 49 (1989)

    Article  ADS  Google Scholar 

  41. A Wolf et al. Phys. Rev. C 40 932 (1989)

    Article  ADS  Google Scholar 

  42. A G Smith et al. Phys. Rev. C 86 014321 (2012)

    Article  ADS  Google Scholar 

  43. A G Smith et al. Phys. Rev. Lett. 73 2540 (1994)

    Article  ADS  Google Scholar 

  44. Y Tian and Y Cui Phys. Rev. C 87 057305 (2013)

    Article  ADS  Google Scholar 

  45. A Petrovici, K W Schmid and A Faessler J. Phys. Conf. Ser. 312 092051 (2011)

    Article  Google Scholar 

  46. A Petrovici, K W Schmid and A Faessler Prog. Part. Nucl. Phys. 66 287 (2011)

    Article  ADS  Google Scholar 

  47. J Skalski, S Mizutori and W Nazarewicz Nucl. Phys. A 617 282 (1997)

    Article  ADS  Google Scholar 

  48. E Clement et al. EPJ Web of Conferences 62 01003 (2013)

    Article  Google Scholar 

  49. Y X Liu et al. Nucl. Phys. A 858 11 (2011)

    Article  ADS  Google Scholar 

  50. S Verma, P A Dhar and R Devi Phys. Rev. C 77 024308 (2008)

    Article  ADS  Google Scholar 

  51. B Slathia, R Devi and S K Khosa Indian J. Phys. 90 1165 (2016)

    Article  ADS  Google Scholar 

  52. S Sadiq, D Ram, R Devi and S K Khosa Indian J. Phys. 89 713 (2015)

    Article  ADS  Google Scholar 

  53. K Hara and Y Sun Int. J. Mod. Phys. E 4 637 (1995)

    Article  ADS  Google Scholar 

  54. P Ring and P Schuck The Nuclear Many-Body problem (Berlin: Springer) p 473 (1980)

    Book  Google Scholar 

  55. T Bengtsson and I Ragnarsson Nucl. Phys. A 436 14 (1985)

    Article  ADS  Google Scholar 

  56. Y Sun and J L Egido Nucl. Phys. A 580 1 (1994)

    Article  ADS  Google Scholar 

  57. A Bohr and B R Mottelson Nuclear Structure I (New York: Benjamin) p 336 (1969)

    Google Scholar 

  58. B Castel and I S Towner Modern theories of nuclear moments (Oxford: Clarendon) (1990)

    Google Scholar 

  59. J Rikovska et al. Phys. Rev. Lett. 85 1392 (2000)

    Article  ADS  Google Scholar 

  60. F Browne et al. Phys. Lett. B 750 448 (2015)

    Article  ADS  Google Scholar 

  61. T Togashi et al. Phys. Rev. Lett. 117 172502 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors of the present paper express their gratitude to Prof. Y. Sun and Prof. J.A. Sheikh for their collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Devi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, R., Devi, R. & Khosa, S.K. Study of shape evolution and electromagnetic properties in neutron-rich Zr and Sr isotopes. Indian J Phys 92, 377–391 (2018). https://doi.org/10.1007/s12648-017-1101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1101-4

Keywords

PACS Nos.

Navigation