Skip to main content
Log in

Simulation of mode lock lasers using microring resonators integrated with InGaAsP saturable absorbers

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Add-drop microring resonators (MRRs) are used in a wide variety of practical applications. To add or drop special wavelength division multiplexing, an optical wavelength selective ring resonator can be used. This paper presents a system of multiple mode lock lasers consisting of an add-drop MRR integrated into a smaller ring with a saturable absorber (SA). In the case of mode-locking, a semiconductor is presented as the SA. This study uses an InGaAsP/InP semiconductor with an InP substrate and a direct bandgap as the MRR. The time-domain traveling wave method is utilized to model the presented photonic circuits. The generated multi-wavelength mode lock lasers have a bandwidth and free spectral range (FSR) of 1.1 and 30.24 nm, corresponding to 0.137 and 3.77 THz, respectively. The drop port output signals have a bandwidth and FSR of 1.5 and 30.24 nm, corresponding to 0.187 and 3.77 THz in the frequency domain. A finesse of 20.16 is obtained, and the Q-factor is ~1 × 103. The side bands of the mode lock lasers have an FSR of 0.86 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Spyropoulou, N Pleros and A Miliou Quantum Electron. IEEE J. 47 40–49 (2011).

    Article  ADS  Google Scholar 

  2. S Lin and K B Crozier Lab Chip 11 4047–4051 (2011).

    Article  Google Scholar 

  3. S E Alavi, I S Amiri, H Ahmad, A S M Supa’at and N Fisal Appl. Opt. 53 8049–8054 (2014).

    Article  ADS  Google Scholar 

  4. I S Amiri, S E Alavi, S M Idrus, A S M Supa’at, J Ali and P P Yupapin IEEE J. Quantum Electron. 50 622–628 (2014).

    Article  ADS  Google Scholar 

  5. A S Kewitsch, G A Rakuljic and P A Willems Opt. Lett. 23 106–108 (1998).

    Article  ADS  Google Scholar 

  6. D Dai and J E Bowers Nanophotonics 3 283–311 (2014).

    Article  Google Scholar 

  7. I Amiri, S Alavi and J Ali Int. J. Commun. Syst. 28 147–160 (2015).

    Article  Google Scholar 

  8. I Amiri and J Ali J. Comput. Theor. Nanosci. 11 1092–1099 (2014).

    Article  Google Scholar 

  9. I Amiri, S Alavi, N Fisal, A Supa’at and H Ahmad IEEE Photon. J. 6 1–11 (2014).

    Article  Google Scholar 

  10. I Amiri, M Soltanian, S Alavi and H Ahmad Opt. Quantum Electron. 47 2455–2464 (2015).

    Article  Google Scholar 

  11. R Shugayev and P Bermel. Opt. Express 22 19204–19218 (2014).

    Article  ADS  Google Scholar 

  12. M Soltanian, I S Amiri, S E Alavi and H Ahmad Laser Phys. Lett. 12 065135 (2015).

    Article  ADS  Google Scholar 

  13. I Amiri and J Ali J. Comput. Theor. Nanosci. 11 2130–2135 (2014).

    Article  Google Scholar 

  14. Y Yu, E Palushani, M Heuck, S Ek, N Kuznetsova, P Colman et al. Ultra-Fast Low Energy Switching Using an Inp Photonic Crystal H0 Nanocavity, Conference on Lasers and Electro-Optics/Pacific Rim, MI1_5, (2013).

  15. R Paschotta and U Keller Appl. Phys. B. 73 653–662 (2001).

    Article  ADS  Google Scholar 

  16. G Roelkens, L Liu, D Liang, R Jones, A Fang, B Koch, et al. Laser Photon. Rev. 4 751–779 (2010).

    Article  Google Scholar 

  17. A W Fang, H Park, O Cohen, R Jones, M J Paniccia and J E Bowers Opt. Express 14 9203–9210 (2006).

    Article  ADS  Google Scholar 

  18. G Roelkens, J Van Campenhout, J Brouckaert, D Van Thourhout, R Baets, P R Romeo et al. Mater. Today 10 36–43 (2007).

    Article  Google Scholar 

  19. Z-C Luo, A-P Luo and W-C Xu Photon. J. IEEE 3 64–70 (2011).

    Article  Google Scholar 

  20. T L Paoli Appl. Phys. Lett. 34 652–655 (1979).

    Article  ADS  Google Scholar 

  21. M Teimourpour, A Rahman, K Srinivasan and R El-Ganainy. Phys. Review Appl. 7 014015 (2017).

    Article  ADS  Google Scholar 

  22. I S Amiri, M R K Soltanian, S E Alavi and H Ahmad Opt. Quantum Electron. 47 2455–2464 (2015).

    Article  Google Scholar 

  23. H Ahmad, M R K Soltanian, I S Amiri, S E Alavi, A R Othman and A S M Supa’at IEEE Photon. J. 7 7904112 (2015).

    Google Scholar 

  24. H Shen, M H Khan, L Fan, L Zhao, Y Xuan, J Ouyang, et al. Opt. Express 18 18067–18076 (2010).

    Article  ADS  Google Scholar 

  25. T Makino, T Gotoh, R Hasegawa, T Arakawa and Y Kokubun. Lightw. Technol. J. 29 2387–12393 (2011).

    Article  ADS  Google Scholar 

  26. I S Amiri, M M Ariannejad, M F Ismail and H Ahmad. J. Opt 2016 1–9 (2016).

    Google Scholar 

  27. I Moerman, G Coudenys, P Demeester, B Turner and J Crawley. J. Cryst. Growth 107 175–180 (1991).

    Article  ADS  Google Scholar 

  28. H-m Xin, Y-q Huang, H-b Chen, H Huang, X Ren and X-g Zhou Optoelectron. Lett. 5 6–10 (2009).

    Article  ADS  Google Scholar 

  29. G P Agrawal and N K Dutta Van Nostrand Reinhold Co. Inc. New York (1986).

  30. S Adachi J. Appl.Phys. 53 8775–8792 (1982).

    Article  ADS  Google Scholar 

  31. S Kelly Electron. Lett. 28 806–807 (1992).

    Article  Google Scholar 

  32. L Nelson, D Jones, K Tamura, H Haus and E Ippen Appl. Phys. B Lasers Opt. 65 277–294 (1997).

    Article  ADS  Google Scholar 

  33. X Liu Phys. Rev. A 84 023835 (2011).

    Article  ADS  Google Scholar 

  34. D Mao, Y Wang, C Ma, L Han, B Jiang, X Gan, et al. Sci. Rep. 5 7965 (2015).

    Article  Google Scholar 

  35. S Gray and A Grudinin. Opt. Lett. 21 207–209 (1996).

    Article  ADS  Google Scholar 

  36. V Kalosha, M Müller, J Herrmann and S Gatz JOSA B 15 535–550 (1998).

    Article  ADS  Google Scholar 

  37. Q Lin and I Sorokina Opt.Commun. 153 285–1288 (1998).

    Article  ADS  Google Scholar 

  38. O Okhotnikov, T Jouhti, J Konttinen, S Karirinne and M Pessa Opt. Lett. 28 364–366 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yupapin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, I.S., Ariannejad, M.M., Ahmad, H. et al. Simulation of mode lock lasers using microring resonators integrated with InGaAsP saturable absorbers. Indian J Phys 91, 1411–1415 (2017). https://doi.org/10.1007/s12648-017-1039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1039-6

Keywords

PACS No.

Navigation