Skip to main content
Log in

Analysis of semiconductor InGaAsP/InP coupled microring resonators (CMRR) by time-domain travelling wave (TDTW) method

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Analysis of a coupled microring resonators (CMRR) system made of InGaAsP/InP semiconductor is presented. This analysis exploited the time-domain travelling wave method in order to model the transfer function of the passive CMRR, and incorporated modeling of both passive and active MRRs filters wherein such filters are mostly characterized by their frequency response. Theoretical calculations of the system were performed using Vernier effects analysis, in which the Vernier operation with signal flow graph is a graphical approach for analyzing the intricate photonic circuits mathematically and allows for quick calculation of optical transfer function. Two MRRs, each having a radius of 32 µm, were vertically coupled together and used to generate resonant peaks. Narrow transmission peaks having bandwidths at full width at half maximum (FWHM) of 0.05 nm, corresponding to 6.24 GHz, were generated. The free spectrum range (FSR) of the pulses was 12 nm, which corresponded to 1.5 THz in the frequency domain. The finesse “F” given by FSR/FWHM was ~240, and the Q-factor obtained, which is the ratio of the resonant wavelength to the 3-dB bandwidth (FWHM), was ~3.1 × 104; such results are indicative of the system having a good performance. The dispersion and group delay of the CMRR has been presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I.S. Amiri, J. Ali, Generating highly dark-bright solitons by Gaussian beam propagation in a PANDA ring resonator. J. Comput. Theor. Nanosci. (CTN) 11(4), 1092–1099 (2014)

    Article  Google Scholar 

  2. S.E. Alavi, I.S. Amiri, S.M. Idrus, A.S.M. Supa’at, Generation and wired/wireless transmission of IEEE802.16m signal using solitons generated by microring resonator. Opt. Quantum Electron. 47, 975–984 (2014)

    Article  Google Scholar 

  3. A. Afroozeh, I.S. Amiri, M.A. Jalil, M. Kouhnavard, J. Ali, P.P. Yupapin, Multi soliton generation for enhance optical communication. Appl. Mech. Mater. 83, 136–140 (2011)

    Article  ADS  Google Scholar 

  4. I.S. Amiri, A. Afroozeh, H. Ahmad, Integrated Micro-ring Photonics: Principles and Applications as Slow Light Devices, Soliton Generation and Optical Transmission (CRC Press, Chapman and Hall, 2015)

    Google Scholar 

  5. J.J. Yang, M. Huang, H.W. Ding, F.C. Mao, Surface WGM sensor based on a cylindrical dielectric waveguide. Laser Phys. Lett. 10(1), 015901 (2013)

    Article  ADS  Google Scholar 

  6. L.-G. Yang, S.-S. Jyu, C.-W. Chow, C.-H. Yeh, C.-Y. Wong, H.-K. Tsang, Y. Lai, A 110 GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator. Laser Phys. Lett. 11(6), 065101 (2014)

    Article  ADS  Google Scholar 

  7. I.S. Amiri, S.E. Alavi, N. Fisal, A.S.M. Supa’at, H. Ahmad, All-optical generation of two IEEE802.11n signals for 2 × 2 MIMO-RoF via MRR system. IEEE Photonics J. 6(6), 1–11 (2014)

    Article  Google Scholar 

  8. Iraj Sadegh Amiri and Harith Ahmad, Optical Soliton Communication Using Ultra-Short Pulses (Springer, New York, 2014)

    Google Scholar 

  9. S.E. Alavi, I.S. Amiri, M.R.K. Soltanian, R. Penny, A.S.M. Supa’at, H. Ahmad, Multiwavelength generation using an add-drop microring resonator integrated with InGaAsP/InP sampled grating distributed feedback (SG-DFB). Chin. Opt. Lett. 14(2), 021301 (2016)

    Article  ADS  Google Scholar 

  10. H. Ahmad, M.R.K. Soltanian, I.S. Amiri, S.E. Alavi, A.R. Othman, A.S.M. Supa’at, Carriers generated by mode-locked laser to increase serviceable channels in radio over free space optical systems. IEEE Photonics J. 7(5), 1–12 (2015)

    Article  Google Scholar 

  11. M. Hu, R. An, H. Zhang, Q. Huang, J. Ge, Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval. Laser Phys. Lett. 10(1), 015801 (2013)

    Article  ADS  Google Scholar 

  12. S. Dey and S. Mandal, in Enhancement of Free Spectral Range in Optical Triple Ring Resonator: A Vernier Principle Approach. 2012 1st international conference on recent advances in information technology (RAIT), 2012, pp 246–250

  13. C.K. Madsen, J.H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, Hoboken, 1999)

    Book  Google Scholar 

  14. O. Schwelb, Generalized analysis for a class of linear interferometric networks. I. Analysis. IEEE Trans. Microw. Theory Tech. 46(10), 1399–1408 (1998)

    Article  ADS  Google Scholar 

  15. J. Capmany, M.A. Muriel, A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing. J. Lightw. Technol. 8(12), 1904–1919 (1990)

    Article  ADS  Google Scholar 

  16. B. Moslehi, J.W. Goodman, M. Tur, H.J. Shaw, Fiber-optic lattice signal processing. Proc. IEEE 72(7), 909–930 (1984)

    Article  ADS  Google Scholar 

  17. M. Soltanian, I.S. Amiri, S.E. Alavi, H. Ahmad, All optical ultra-wideband signal generation and transmission using mode-locked laser incorporated with add-drop microring resonator (MRR). Laser Phys. Lett. 12(6), 065105 (2015)

    Article  ADS  Google Scholar 

  18. I. Amiri, S. Alavi, M. Soltanian, H. Ahmad, N. Fisal, A.S.M. Supa’at, Experimental measurement of fiber-wireless (Fi-Wi) transmission via multi mode locked solitons from a ring laser EDF cavity. IEEE Photonics J. 7(2), 1–9 (2015)

    Article  Google Scholar 

  19. M.M. Nasir, Z. Yusoff, M. Al-Mansoori, H.A. Rashid, P. Choudhury, Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity. Laser Phys. Lett. 5(11), 812 (2008)

    Article  Google Scholar 

  20. Y. Kim, B. Chun, Y. Kim, S. Hyun, S. Kim, Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication. Laser Phys. Lett. 7(7), 522 (2010)

    Article  ADS  Google Scholar 

  21. I.S. Amiri, S.E. Alavi, H. Ahmad, A.S.M. Supa’at, N. Fisal, Numerical computation of solitonic pulse generation for terabit/sec data transmission. Opt. Quant. Electron. 47(7), 1765–1777 (2014)

    Article  Google Scholar 

  22. P. Yupapin, C. Teeka, M. A. Jalil, and J. Ali, Nanoscale Nonlinear Panda Ring Resonator: Science Pub Incorporated, 2012

  23. G.P. Agrawal, Nonlinear Fiber Optics, Second edn. (Academic Press, Cambridge, 1995)

    MATH  Google Scholar 

  24. I.S. Amiri, M.R.K. Soltanian, S.E. Alavi, A.R. Othman, M.Z.A Razak, H. Ahmad, Microring resonator for transmission of solitons via wired/wireless optical communication. J. Opt. (2015)

  25. I.S. Amiri, S.E. Alavi, M.R.K. Soltanian, N. Fisal, A.S.M. Supa’at, H. Ahmad, Increment of access points in integrated system of wavelength division multiplexed passive optical network radio over fiber. Sci. Rep. 5, 11897 (2015)

    Article  ADS  Google Scholar 

  26. K. Oda, N. Takato, H. Toba, A wide-FSR waveguide double-ring resonator for optical FDM transmission systems. J. Lightw. Technol. 9(6), 728–736 (1991)

    Article  ADS  Google Scholar 

  27. C. Yeh, C. Chow, Y. Wu, Y. Lin, B. Cheng, J. Chen, Using optimal cavity loss and saturable-absorber passive filter for stable and tunable dual-wavelength erbium fiber laser in single-longitudinal-mode operation. Laser Phys. Lett. 8(9), 672 (2011)

    ADS  Google Scholar 

  28. S. Suzuki, K. Oda, Y. Hibino, Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz. J. Lightw. Technol. 13(8), 1766–1771 (1995)

    Article  ADS  Google Scholar 

  29. M. Bahadoran, J. Ali, P.P. Yupapin, Graphical approach for nonlinear optical switching by PANDA vernier filter. Photon. Technol. Lett. IEEE 25(15), 1470–1473 (2013)

    Article  ADS  Google Scholar 

  30. S. Mandal, K. Dasgupta, T. Basak, S. Ghosh, A generalized approach for modeling and analysis of ring-resonator performance as optical filter. Opt. Commun. 264(1), 97–104 (2006)

    Article  ADS  Google Scholar 

  31. I.S. Amiri, S. Alavi, M. Soltanian, R. Penny, A. Supa’at, N. Fisal, H. Ahmad, 2 × 2 MIMO-OFDM-RoF generation and transmission of double V-band signals using microring resonator system. Opt. Quantum Electron. (2015)

  32. S.E. Alavi, I.S. Amiri, H. Ahmad, A.S.M. Supa’at, N. Fisal, Generation and transmission of 3 × 3 W-Band MIMO-OFDM-RoF signals using micro-ring resonators. Appl. Opt. 53(34), 8049–8054 (2014)

    Article  ADS  Google Scholar 

  33. I.S. Amiri, J. Ali, Data signal processing via a manchester coding-decoding method using chaotic signals generated by a PANDA ring resonator. Chin. Opt. Lett. 11(4), 041901 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. S.B. Dey, S. Mandal, N. Jana, Quadruple optical ring resonator based filter on silicon-on-insulator. Optik Int. J. Light Electron Opt. 124(17), 2920–2927 (2013)

    Article  Google Scholar 

  35. C. Sirawattananon, M. Bahadoran, J. Ali, S. Mitatha, P.P. Yupapin, Analytical vernier effects of a PANDA ring resonator for microforce sensing application. IEEE Trans. Nanotechnol. 11(4), 707–712 (2012)

    Article  ADS  Google Scholar 

  36. M. Bahadoran, J. Ali, P.P. Yupapin, Ultrafast all-optical switching using signal flow graph for PANDA resonator. Appl. Opt. 52(12), 2866–2873 (2013)

    Article  ADS  Google Scholar 

  37. D.G. Rabus, Z. Bian, A. Shakouri, A GaInAsP-InP double-ring resonator coupled laser. IEEE Photonics Technol. Lett. 17(9), 1770 (2005)

    Article  ADS  Google Scholar 

  38. M. Bahadoran, A.F.A. Noorden, K. Chaudhary, M.S. Aziz, J. Ali, P. Yupapin, Nano force sensing using symmetric double stage micro resonator. Measurement 58, 215–220 (2014)

    Article  Google Scholar 

  39. I.S. Amiri, S.E. Alavi, S.M. Idrus, A. Nikoukar, J. Ali, IEEE 802.15.3c WPAN standard using millimeter optical soliton pulse generated by a panda ring resonator. IEEE Photonics J. 5(5), 7901912 (2013)

    Article  Google Scholar 

  40. I.S. Amiri, J. Ali, Optical quantum generation and transmission of 57–61 GHz frequency band using an optical fiber optics. J. Comput. Theor. Nanosci. (JCTN) 11(10), 2130–2135 (2014)

    Article  Google Scholar 

  41. D. G. Rabus, Realization of Optical Filters Using Ring Resonators with Integrated Semiconductor Optical Amplifiers in GaInAsP/InP, Universitätsbibliothek, 2002

  42. Iraj Sadegh Amiri and Abdolkarim Afroozeh, Ring Resonator Systems to Perform the Optical Communication Enhancement Using Soliton (Springer, USA, 2014)

    Google Scholar 

  43. M.R.K. Soltanian, I.S. Amiri, W.Y. Chong, S.E. Alavi, H. Ahmad, Stable dual-wavelength coherent source with tunable wavelength spacing generated by spectral slicing a mode-locked laser using microring resonator. IEEE Photonics J. 7(6), 1–11 (2015)

    Article  Google Scholar 

  44. I.S. Amiri, M.R.K. Soltanian, S.E. Alavi, H. Ahmad, Multi wavelength mode-lock soliton generation using fiber laser loop coupled to an add-drop ring resonator. Opt. Quant. Electron. 47(8), 2455–2464 (2015)

    Article  Google Scholar 

  45. I.S. Amiri, P. Naraei, J. Ali, Review and theory of optical soliton generation used to improve the security and high capacity of MRR and NRR passive systems. J. Comput. Theor. Nanosci. (JCTN) 11(9), 1875–1886 (2014)

    Article  Google Scholar 

  46. D. Chen, H. Fu, S. He, Novel microwave photonic filter based on a mode-locked fiber laser. Laser Phys. Lett. 4(8), 597 (2007)

    Article  ADS  Google Scholar 

  47. A. Naji, M. Abidin, M. Al-Mansoori, A. Faidz, M. Mahdi, Experimental investigation of noise in double-pass erbium-doped fiber amplifiers. Laser Phys. Lett. 4(2), 145 (2007)

    Article  ADS  Google Scholar 

  48. J. Zhao, Y. Wang, B. Yao, Y. Ju, High efficiency, single-frequency continuous wave Nd: YVO4/YVO4 ring laser. Laser Phys. Lett. 7(2), 135 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Grant Number LRGS(2015)NGOD/UM/KPT and RU007/2015 from the university of Malaya (UM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Amiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, I.S., Ariannejad, M.M., Ismail, M.F. et al. Analysis of semiconductor InGaAsP/InP coupled microring resonators (CMRR) by time-domain travelling wave (TDTW) method. J Opt 46, 311–319 (2017). https://doi.org/10.1007/s12596-016-0353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0353-2

Keywords

Navigation