Skip to main content

Advertisement

Log in

On the global and local nuclear stopping in mass asymmetric nuclear collisions using density-dependent symmetry energy

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present theoretical calculations have been performed within the framework of IQMD model to study a particular set of mass symmetric and asymmetric reactions (keeping total mass fixed) over a wide range of incident energies and colliding geometries. It has been observed that global as well as local nuclear stopping is influenced by the mass asymmetry of the reaction strongly. Influence of density-dependent symmetry energy has been observed in local nuclear stopping. Global stopping decreases with the increase in colliding geometry. Effect of colliding geometry on nuclear stopping is more at higher energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P Danielewicz, R Lacey and W G Lynch Science 298 1592 (2002)

    Article  ADS  Google Scholar 

  2. J M Lattimer and M Prakash Phys. Rep. 442 109 (2007)

    Article  ADS  Google Scholar 

  3. J M Lattimer and M Prakash Science 304 536 (2004)

    Article  ADS  Google Scholar 

  4. M Prakash et al. Phys. Rep. 280 1 (1997)

    Article  ADS  Google Scholar 

  5. B A Li, L W Chen and C M Ko Phys. Rep. 464 113 (2008)

    Article  ADS  Google Scholar 

  6. C Xu, B A Li and L W Chen Phys. Rev. C 82 054607 (2010)

    Article  ADS  Google Scholar 

  7. D V Shetty, S A Yennello and G A Souliotis Phys. Rev. C 76 024606 (2007)

    Article  ADS  Google Scholar 

  8. Y Zhang et al. Phys. Lett. B 664 145 (2008)

    Article  ADS  Google Scholar 

  9. M B Tsang et al. Phys. Rev. Lett. 102 122701 (2009)

    Article  ADS  Google Scholar 

  10. P Russotto et al. Phys. Lett. B 697 471 (2011)

    Article  ADS  Google Scholar 

  11. S Kumar and S Kumar Chin. Phys. Lett. 27 062504 (2010) (the references within)

    Article  ADS  Google Scholar 

  12. D T Khoa et al. Nucl. Phys. A 548 102 (1992)

    Article  ADS  Google Scholar 

  13. R K Puri et al. Nucl. Phys. A 575 733 (1994)

    Article  ADS  Google Scholar 

  14. K S Vinayak and S Kumar J. Phys. G 39 095105 (2012)

    Article  ADS  Google Scholar 

  15. G Lehaut et al. Phys. Rev. Lett. 104 232701 (2010)

    Article  ADS  Google Scholar 

  16. J Y Liu et al. Phys. Rev. Lett. 86 975 (2001)

    Article  ADS  Google Scholar 

  17. Q Li and Z Li Chin. Phys. Lett. 19 321 (2002)

    Article  ADS  Google Scholar 

  18. J K Dhawan et al. Phys. Rev. C 74 057901 (2006) (the references within)

    Article  ADS  Google Scholar 

  19. A Jain, S Kumar and R K Puri Phys. Rev. C 84 057602 (2011)

    Article  ADS  Google Scholar 

  20. O Lopez et al. Phys. Rev. C 90 064602 (2014)

    Article  ADS  Google Scholar 

  21. B A Li and Y J Yennello Phys. Rev. C 52 R1746 (1995)

    Article  ADS  Google Scholar 

  22. J Singh, S Kumar and R K Puri Phys. Rev. C 62 044617 (2000)

    Article  ADS  Google Scholar 

  23. J Singh and R K Puri J. Phys. G 27 2091 (2001)

    Article  ADS  Google Scholar 

  24. C Hartnack et al. Eur. Phys. J. A 1 151 (1998)

    Article  ADS  Google Scholar 

  25. J Aichelin Phys. Rep. 202 233 (1991)

    Article  ADS  Google Scholar 

  26. A D Sood and R K Puri Phys. Rev. C 69 054612 (2004)

    Article  ADS  Google Scholar 

  27. R Bansal, S Gautam and R K Puri J. Phys. G 41 035103 (2014)

    Article  ADS  Google Scholar 

  28. R K Puri, C Hartnack and J Aichelin Phys. Rev. C 54 R28 (1996)

    Article  ADS  Google Scholar 

  29. Y K Vermani and R K Puri J. Phys. G 36 105103 (2009)

    Article  ADS  Google Scholar 

  30. S Kaur and R K Puri Phys. Rev. C 89 057603 (2014)

    Article  ADS  Google Scholar 

  31. C David, C Hartnack and J Aichelin Nucl. Phys. A 650 358 (1999)

    Article  ADS  Google Scholar 

  32. C Hartnack et al. Phys. Rep. 510 119 (2012)

    Article  ADS  Google Scholar 

  33. S Gautam, A D Sood, R K Puri and J Aichelin Phys. Rev. C 83 034606 (2011)

    Article  ADS  Google Scholar 

  34. S A Bass, C Hartnack, H Stocker and W Greiner Phys. Rev. C 51 3343 (1995)

    Article  ADS  Google Scholar 

  35. S Gautam et al. Phys. Rev. C 86 034607 (2012)

    Article  ADS  Google Scholar 

  36. M Berenguer et al. J. Phys. G 18 655 (1992)

    Article  ADS  Google Scholar 

  37. M Di Toro et al. J. Phys. G 37 083101 (2010)

    Article  ADS  Google Scholar 

  38. G Q Zhang et al. Phys. Rev. C 84 034612 (2011)

    Article  ADS  Google Scholar 

  39. K Mandeep and K Suneel Indian J. Phys. 89 967 (2015)

    Article  ADS  Google Scholar 

  40. D V Shetty et al. Num. Instrum. Methods Phys. Res. B 261 990 (2007)

    Article  ADS  Google Scholar 

  41. M H Zhao et al. Phys. Rev. C 89 037001 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Suneel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amandeep, K., Suneel, K. On the global and local nuclear stopping in mass asymmetric nuclear collisions using density-dependent symmetry energy. Indian J Phys 91, 1095–1102 (2017). https://doi.org/10.1007/s12648-017-1002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1002-6

Keywords

PACS No.

Navigation