Skip to main content
Log in

Effect of solvent on nanostructure and thermoelectric properties of bismuth

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Nanostructures of bismuth (Bi) are obtained by employing solvothermal process. Two different shapes, nanorods and nanospheres, are produced by changing the ratio of solvents (1) ethylene glycol (EG) and (2) EG and absolute ethanol (AE) in the ratio of 1:1, respectively. Prepared samples are characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Transport properties measured on the pressed pellets of bismuth nanostructures exhibit metallic behavior. The room temperature conductivity varies from 64 to 18 S/cm depending on morphology of the nanostructure. The thermal conductivity is found to be ~50 times lower in nanostructures than that of single crystal bismuth. Thermoelectric performances like power factor and figure of merit are correlated with the porosities of the samples, which show higher value for sphere-like than that of rod-like Bi nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S R Hostler, Y Q Qu, M T Demko, A R Abramson, X Qiu, and C Burda Superlatt. Microstruct. 43 195 (2008)

    Article  ADS  Google Scholar 

  2. M S Dresselhaus et al. Adv. Mater. 19 1043 (2007)

    Article  Google Scholar 

  3. P Y Yu and M Cardona Fundamentals of Semiconductors-Physics and Material Properties 3 rd Edition (Berlin: Springer) p 22 (2001)

    Google Scholar 

  4. S Takaoka and K Murase J. Phys. Soc. Jpn. 54 2250 (1985)

    Article  ADS  Google Scholar 

  5. J Heremans et al. Phys. Rev. B 61 2921 (2000)

    Article  ADS  Google Scholar 

  6. J S Son et al. Angew. Chem. Int. Ed. 50 1363 (2011)

    Article  Google Scholar 

  7. A Boukai, K Xu and J R Health Adv. Mater. 18 864 (2006)

    Article  Google Scholar 

  8. Y M Lin, X Z Sun and M S Dresselhaus Phys. Rev. B 62 4610 (2000)

    Article  ADS  Google Scholar 

  9. Y M Lin, O Rabin, S B Cronin, J Y Ying and M S Dresselhaus Appl. Phys. Lett. 81 2403 (2002)

    Article  ADS  Google Scholar 

  10. A L Moore, M T Petters, F Zhou and L Shi J. Appl. Phys. 106 034310 (2009)

    Article  ADS  Google Scholar 

  11. J W Roh et al. ACS Nano 5 3954 (2011)

    Article  Google Scholar 

  12. G Keskar, E Iyyamperumal, D A Hitchcock, J He, A M Rao and L D Pfefferle Nano Energy 1 706 (2012)

    Article  Google Scholar 

  13. Y D Li et al. J.Am. Chem. Soc. 123 9904 (2001)

    Article  Google Scholar 

  14. D C Yang, G W Meng, Q L Xu, F M Han, M G Kong and L D Zhang J. Phys. Chem. C 112 8614 (2008)

    Article  Google Scholar 

  15. J Chen, L M Wu and L Chen Inorg. Chem. 46 586 (2007)

    Article  Google Scholar 

  16. Y B Xu, Z M Ren, W L Ren, G H Cao, K Deng and Y B Zhong Nanotechnology 19 115602 (2008)

    Article  ADS  Google Scholar 

  17. J Wang, X Wang, Q Peng and Y Li Inorg. Chem. 43 7552 (2004)

    Article  Google Scholar 

  18. J Fang et al. Mater. Sci. Eng. B. 83 254 (2001)

    Article  Google Scholar 

  19. J Reppert et al. Chem. Phys. Lett. 442 334 (2007)

    Article  ADS  Google Scholar 

  20. H Yu, P C Gibbons and W E Buhro J. Mater. Chem. 14 595 (2004)

    Article  Google Scholar 

  21. X Wang, J Zhang, Q Peng and Y Li Nature 437 121 (2005)

    Article  ADS  Google Scholar 

  22. A Nikolopoulou et al. Appl. Clay Sci. 46 363 (2009)

    Article  Google Scholar 

  23. F Gao, Q Lu and S Komarneni Chem. Mater. 17 856 (2005)

    Article  Google Scholar 

  24. P Toneguzzo, G Viau, O Acher, F F Vincent and F Fievet Adv. Mater. 10 1032 (1998)

    Article  Google Scholar 

  25. A R Roosen and W C Carter Phys. A 261 232 (1998)

    Article  Google Scholar 

  26. D Banerjee, P Dhara, K Chatterjee, K Kargupta and S Ganguly Proceedings of the International Conference Nanomaterials: Applications and Properties 1 04NEA04 (2012)

    Google Scholar 

  27. J Wu, F Qin, Z Lu, H J Yang and R Chen Nano Res. Lett. 6 66 (2011)

    Article  Google Scholar 

  28. C D Zou, Y I Gao, B Yang and Q J Zhai Phys. B 404 4045 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge Department of Science and Technology (DST), India (SR/S2/CMP-0031/2011), for its financial support. One of the authors M. M. acknowledges DST-INSPIRE (IF 130168) for her JRF fellowship. UGC-DAE CSR has been acknowledged for various experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulsi, C., Dhara, P., Mitra, M. et al. Effect of solvent on nanostructure and thermoelectric properties of bismuth. Indian J Phys 90, 557–562 (2016). https://doi.org/10.1007/s12648-015-0772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0772-y

Keywords

PACS Nos.

Navigation