Skip to main content
Log in

A Facile Synthesis Method of BiSb Nanoparticles for Thermoelectric Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

BiSb nanoparticles were synthesized by solvothermal method. The synthesized material having a trigonal structure with space group R3m was confirmed through X-ray diffraction pattern. The Williamson-Hall method was employed to analyze the lattice stress and micro-strain produced in the BiSb nanoparticles. On the prepared material surface morphology studies were carried out using HR-SEM with EDXA. UV-visible absorption spectrum shows a wide absorption peak at 287 nm and the estimated band gap value is at Eg = 1.6 eV (from Tauc plot). The values of remanent polarization Pr = 0.156 μC/cm2, saturation polarization Ps = 0.253 μC/cm2, and coercive electric field Ec = 13.5 kV/cm obtained from the loop were close to the value. The BiSb nanoparticles exhibit semi-metallic-reported characteristics. This material is useful for thermoelectric power generation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rowe, D.M. (ed.): Thermoelectrics handbook: macro to nano. CRC Taylor & Francis, Group, Boca Raton, London, New York (2006)

    Google Scholar 

  2. Yim, W.M., Amith, A.: Solid State Electron. 15, 1141 (1972)

    Article  ADS  Google Scholar 

  3. Lenoir, B., Cassart, M., Michenaud, J.-P., Scherrer, H., Scherrer, S.: J. Phys. Chem. Solids. 75, 89 (1996)

    Article  Google Scholar 

  4. Brandt, N.B., Chudinov, S.M., Karavaev, V.G.: Soviet Phys. JETP. 34, 368 (1972)

    ADS  Google Scholar 

  5. Slack, G.: In: Rowe, D.M. (ed.) CRC handbook of thermoelectrics, pp. 407–440. CRC Press, Boca Raton (1995)

    Google Scholar 

  6. Lenoir, B., Dauscher, A., Cassart, M., Ravich, Y.I., Scherrer, H.: J. Phys. Chem. Solids. 59, 129 (1998)

    Article  ADS  Google Scholar 

  7. Smith, G.E., Wohe, R.: J. Appl. Phys. 33, 481 (1962)

    Google Scholar 

  8. Jandl, J.: Proceedings of the 11th International Conference on Thermoelectrics, pp. 254–259. IEEE (1992)

  9. Martin-Lopez, R., Lenoir, B., Devaux, X., Dauscher, A., Scherrer, H.: Mater. Sci. Eng. A. 248, 147–152 (1998)

    Article  Google Scholar 

  10. Lee, Y.H., Koyanagi, T.: Thermoelectric properties of n-Bi-Sb sintered alloys prepared by spark plasma sintering method. In: Proceedings ICT 2001, Thermoelectrics, 2001 International Conference on ICT, Beijing, pp. 278–281 (2001)

    Google Scholar 

  11. Hiroyuki, K., Hiroyuki, N., Kiyabu, T., Masaki, I., Yasutoshi, N.: J. Phys. Chem. Solids. 65, 1223–1227 (2004)

    Article  Google Scholar 

  12. Chung, D.Y., Hogan, T.P., Rocci-Lane, M., Brazis, P., Ireland, J.R., Kannewurf, C.R., Bastea, M., Uher, C., Kanatzidis, M.G.: J. Am. Chem. Soc. 126, 6414–6428 (2004)

    Article  Google Scholar 

  13. Lenoir, B.,Cassart, M.,Kinany-Alaoui, M.,Scherrer, H. and Scherrer, S., Thermoelectric properties of Bi-Sb alloys prepared by THM, AIP, 1994. The thirteenth international conference on thermoelectrics, 230–234

  14. Thomas, C.B., Goldsmid, H.J.: J. Phys. D: Appl. Phys. 3, 333–336 (1970)

    Article  ADS  Google Scholar 

  15. Cho, S., Divenere, A., Wong, G.K., Ketterson, J.B., Meyer, J.R.: J. Appl. Phys. 85, 3655–3660 (1999)

    Article  ADS  Google Scholar 

  16. Noguchi, H., Kitagawa, H., Kiyabu, T., Hasezaki, K., Noda, Y.: J. Phys. Chem. Solids. 68, 91–95 (2007)

    Article  ADS  Google Scholar 

  17. Tan, C.G., Zhou, P., Lin, J.G., Sun, L.Z.: Phys. Status Solidi (RRL). 11, 1700051 (2017)

    Article  ADS  Google Scholar 

  18. Yu, W., Niu, C.-Y., Zhu, Z., Cai, X., Zhang, L., Bai, S., Zhao, R., Jia, Y.: RSC Adv. 7, 27816 (2017)

    Article  ADS  Google Scholar 

  19. Brzezinska, M., Bieniek, M., Wozniak, T., Potasz, P., Wójs, A.: J. Phys.: Condensed Matter. 30(12), 125501

  20. Singh, S., Romero, A.H.: Phys. Rev. B. 95, 165444 (2017)

    Article  ADS  Google Scholar 

  21. Ektarawong, A., Bovornratanaraks, T., Alling, B.: Phys. Rev. B. 101(13), (2020)

  22. Woodcox, M., Young, J., Smeu, M.: Phys. Rev. B. 100(10), (2019)

  23. Singh, S., Valencia-Jaime, I., Pavlic, O., Romero, A.H.: Phys. Rev. B. 97(5), (2018)

  24. Lv, H.Y., Liu, H.J., Pan, L., Wen, Y.W., Tan, X.J., Shi, J., Tang, X.F.: J. Phys. Chem. C. 114(49), 21234–21239 (2010)

    Article  Google Scholar 

  25. Wu, C.Y., Sun, L., Han, J.C., Gong, H.R.: J. Mater. Chem. C. 8, 581–590 (2020)

    Article  Google Scholar 

  26. Mote, V.D., Purushotham, Y., Dole, B.N.: J. Theor. Appl. Phys. 6, 6 (2012)

    Article  ADS  Google Scholar 

  27. Bindu, P., Thomas, S.: J. Theor. Appl. Phys. 8, 123 (2014)

    Article  ADS  Google Scholar 

  28. Forouhi, A.R., Bloomer, I.: Phys. Rev. B. 38, 1865–1874 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author V. Asvini would like to thank the UGC-DAE INDORE Project, UGC-DAE Consortium for scientific Research Centre, Indore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravichandran.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asvini, V., Saravanan, G., Kalaiezhily, R.K. et al. A Facile Synthesis Method of BiSb Nanoparticles for Thermoelectric Applications. J Supercond Nov Magn 34, 661–666 (2021). https://doi.org/10.1007/s10948-020-05748-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05748-z

Keywords

Navigation