Skip to main content
Log in

Calculations of relativistic configuration interaction for X-ray satellites of phosphorus ions

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, transition wavelengths, transition probabilities, absorption oscillator strengths and line strengths for X-rays from P VI to P XIV have been calculated using the multi-configuration Dirac–Fock and relativistic configuration interaction methods. The contributions of the Breit interaction, self-energy and vacuum polarization corrections have been considered in the calculation. The present data are in good agreement with some previous experimental and theoretical values. The data of P VI to P XIV have been ascertained to be reliable by using the ratio of the velocity to length gauge of the transition rate (A L/A V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. V Lebouteiller, Kuassivi and R Ferlet Astron. Astrophys. 443 509 (2005)

    Article  ADS  Google Scholar 

  2. E Caffau, P Bonifacio, R Faraggiana and M steffen Astron. Astrophys. 532 98 (2011)

    Google Scholar 

  3. B C Koo, Y H Lee, D S Moon, S C Yoon and J C Raymond Science 342 6164 (2013)

    Google Scholar 

  4. S R Pottasch, J Bernard-Salas and T L Roellig Astron. Astrophys. 481 393 (2008)

    Google Scholar 

  5. S R Pottasch and J Bernard-Salas Astron. Astrophys. 490 715 (2008)

    Article  ADS  Google Scholar 

  6. V A Boiko, A Ya Faenov, S A Pikuz, I Yu Skobelev, A V Vinogradov and E A Yukov J. Phys. B At. Mol. Phys. 10 3387 (1977)

    Article  ADS  Google Scholar 

  7. B C Fawcett, R A Hardcastle and G Tondello J. Phys. B At. Mol. Phys. 3 564 (1970)

    Article  ADS  Google Scholar 

  8. E V Aglitskii, V A Boiko, S M Zakharov, S A Pikuz and A Y Faenov Sov. J. Quant. Electron. 4 4 (1974)

    Google Scholar 

  9. A J Bearden Rev. Mod. Phys. 39 1 (1967)

    Article  Google Scholar 

  10. W C Martin, R Zalubas and A Musgrove J. Phys. Chem. Ref. Data. 14 751 (1985)

    Article  ADS  Google Scholar 

  11. L L House Astrophys. J. Suppl. Ser. 18 155 (1969)

    Article  Google Scholar 

  12. C Laughlin J. Phys. B At. Mol. Phys. 11 L391 (1978)

  13. C D Lin, W R Johnson and A Dalgarno Phys. Rev. A 15 1 (1977)

    Article  Google Scholar 

  14. G W F Drake Phys. Rev. A 19 4 (1979)

    Article  Google Scholar 

  15. G Marcus, E Louzon, Z Henis and S Maman J. Opt. Soc. Am. B 24 1187

  16. E Louzon et al. Laser Part Beams 29 61 (2011)

    Article  ADS  Google Scholar 

  17. G A Vergunova et al. Phys. Scr. 55 483 (1997)

    Article  ADS  Google Scholar 

  18. A Bartnic et al. Quant. Electron. 25 19 (1995)

    Article  ADS  Google Scholar 

  19. H Fiedorwicz, A Bartnik, R Jarocki, M Szczurek and T Wilhein Appl. Phys. B 67 391 (1998)

    Google Scholar 

  20. E Träbert, I A Armour, S Bashkin, N A Jelley, R O’Brien and J D Silver J. Phys. B 12 1665 (1979)

    Article  ADS  Google Scholar 

  21. T Mohamed et al. Phys. Rev. A 66 022719 (2002)

    Article  ADS  Google Scholar 

  22. B L Deng, G Jiang, L Zhang, X Wang and X-Z Hua Phys. Scr. 85 045303 (2012)

    Google Scholar 

  23. K G Dyall, I P Grant, C T Johnson, F A Parpia and E P Plummer Comput. Phys. Commun. 55 425 (1989)

    Article  ADS  Google Scholar 

  24. F A Parpia, C F Fischer and I P Grant Comput. Phys. Commun. 94 249 (1996)

    Article  ADS  Google Scholar 

  25. A Stathopoulos and C F Fisher Comput. Phys. Commum. 79 1 (1994)

    Article  Google Scholar 

  26. J Olsen, M R Godefroid, P A Jonsson, P A Malmquist and C F Fisher Phys. Rev. E 52 4499 (1995)

    Google Scholar 

  27. S Song and F Peng J. Phys. B: At. Mol. Opt. Phys. 39 2087 (2006)

    Article  ADS  Google Scholar 

  28. L Hao and G Jiang At. Data Nucl. Data Tables 94 739 (2008)

    Article  ADS  Google Scholar 

  29. F Hu, G Jiang, W Hong and L Hao Eur. Phys. J. D 49 293 (2008)

    ADS  Google Scholar 

  30. H J Hou, G Jiang, F Hu and L Hao At. Data Nucl. Data Tables 95 125 (2009)

    Article  ADS  Google Scholar 

  31. L Zhang, G Jiang, L Hao and B L Deng Phys. Scr. 83 025302 (2011)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Vanderbilt University for providing the GRASPVU program package for free. This work was supported by the National Natural Science Foundation of China under Grant No. 11174213 and by the Education Department of Sichuan Province under Grant No. 14ZB0069 as well as by the Youth Science Foundation of Chengdu University of Technology under Grant No. 2012QJ11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X.J., Deng, B.L., Zhang, C.Y. et al. Calculations of relativistic configuration interaction for X-ray satellites of phosphorus ions. Indian J Phys 90, 225–231 (2016). https://doi.org/10.1007/s12648-015-0731-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0731-7

Keywords

PACS Nos.

Navigation