Skip to main content
Log in

Ab initio study of elastic, electronic, and vibrational properties of SnTe and PbTe

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context and results

The elastic, electronic, and vibrational properties of the ground state of the rocksalt SnTe and PbTe are investigated. The deduced elastic constants, namely, shear modulus, Young’s modulus, and Poisson’s ratio are in very good agreement with the experimental and other theoretical data. The electronic band structure and density of states are obtained with and without considering the spin–orbit coupling. The bandgaps of SnTe and PbTe with (without) spin–orbit coupling are 0.11 (0.05) eV and 0.01 (0.78) eV, respectively. The bandgaps with spin–orbit interactions are nearer to experimental data. The hybrid functionals give higher values of bandgaps for both the SnTe and PbTe. In both compounds, the bandgap increases with volume. The valence bandwidths, however, decrease with increasing volume. The vibrational frequencies are found in reasonable agreement with the experiment. The frequencies increase with pressure.

Computational method

In this work, the ab initio calculations of SnTe and PbTe crystals are carried out applying plane wave pseudopotential method using the QUANTUM ESPRESSO package. The PBE exchange and correlation functional based on GGA is considered. The fully relativistic norm-conserving pseudopotentials for Sn, Pb, and Te are used. The self-consistent field calculations are performed over a dense MP net of 18 × 18 × 18 k-points. The energy cut-off of 70 Ryd was found sufficient to achieve convergence of 10−6 Ryd in total energy of the crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and in the supplementary material.

References

  1. Ando Y, Fu T (2015) Topological crystalline insulators and topological superconductors: from concepts to materials. Ann Rev Condens Matter Phys 6:361–381. https://doi.org/10.1146/annurev-conmatphys-031214-014501

    Article  CAS  Google Scholar 

  2. Tian W, Yu W, Shi J, Wang Y (2017) The property, preparation and application of topological insulators: a review. Materials 10:814. https://doi.org/10.3390/ma10070814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ando Y (2013) Topological insulator materials. J Phys Soc Jpn 82:102001. https://doi.org/10.7566/JPSJ.82.102001

    Article  CAS  Google Scholar 

  4. Fu L, Kane CL (2007) Topological insulators with inversion symmetry. Phys Rev B 76:045302. https://doi.org/10.1103/PhysRevB.76.045302

    Article  CAS  Google Scholar 

  5. Paliwal U, Kothari RK, Joshi KB (2012) Electronic and structural properties of ZnxCd1−xSySe1−y alloys lattice matched to GaAs and InP: an EPM study. Superlatt Microstruct 51:635–643. https://doi.org/10.1016/j.spmi.2012.02.017

    Article  CAS  Google Scholar 

  6. Yan B, Zhang SC (2012) Topological materials. Rep Prog Phys 75:096501. https://doi.org/10.1088/0034-4885/75/9/096501

    Article  CAS  PubMed  Google Scholar 

  7. Rajabi K, Pakizeh E, Tashakori H, Taghizadeh-Farahmand F (2023) First principle analysis of the structural, electrical and thermoelectric properties of YTe (YSi, Pb, Sn, Ge) and PbX (X=O, S, Se, Te) nano-layers. Solid State Commun 359:115023. https://doi.org/10.1016/j.ssc.2022.115023

    Article  CAS  Google Scholar 

  8. Li Z, Li S, Castellan JP, Heid R, Xiao Y, Zhao LD, Chen Y, Weber Y (2022) Anomalous transverse optical phonons in SnTe and PbTe. Phys Rev B 105:014308. https://doi.org/10.1103/PhysRevB.105.01430

    Article  CAS  Google Scholar 

  9. Shenoy US, Bhat DK (2021) Improving the ZT of SnTe using electronic structure engineering: unusual behavior of Bi dopant in the presence of Pb as a co-dopant. Mater Adv 2:6267–6271. https://doi.org/10.1039/D1MA00696G

    Article  CAS  Google Scholar 

  10. Gueddim A, Bouarissa N, Gacem L, Villesuzanne A (2018) Structural phase stability, elastic parameters and thermal properties of YN from first-principles calculation. Chin J Phys 56:1816–1825. https://doi.org/10.1016/j.cjph.2018.08.014

    Article  CAS  Google Scholar 

  11. Gueddim A, Zerroug S, Bouarissa N, Fakroun N (2017) Study of the elastic properties and wave velocities of rocksalt Mg1−xFexO: ab initio calculations. Chin J Phys 55:1423–1431. https://doi.org/10.1016/j.cjph.2017.04.009

    Article  CAS  Google Scholar 

  12. Cava RJ, Ji H, Fuccillo MK, Gibson QD, Hor YS (2013) Crystal structure and chemistry of topological insulators. J Mater Chem C 1:3176–3189. https://doi.org/10.1039/C3TC30186A

    Article  CAS  Google Scholar 

  13. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M et al (2017) Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J Phys Condens Matter 29:465901. https://doi.org/10.1088/1361-648X/aa8f79

    Article  CAS  PubMed  Google Scholar 

  14. Setten MJV, Giantomassi M, Bousquet E, Verstraete MJ, Hamann DR, Gonze X et al (2018) The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput Phys Commun 226:39–54. https://doi.org/10.1016/j.cpc.2018.01.012

    Article  CAS  Google Scholar 

  15. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  16. Monkhorst H, Pack J (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  17. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30:244–247. https://doi.org/10.1073/pnas.30.9.244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dal Corso A (2022) https://dalcorso.github.io/thermo_pw/. Accessed 5 July 2022

  19. Dal Corso A (2016) Elastic constants of beryllium: a first-principles investigation. J Phys: Condens Matter 28:075401. https://doi.org/10.1088/0953-8984/28/7/075401

    Article  CAS  Google Scholar 

  20. Voigt W (1889) Ueber die Beziehung zwischen den beiden Elasticitäts constanten isotroper Körper. Annalen Phys 274:573. https://doi.org/10.1002/andp.18892741206

    Article  Google Scholar 

  21. Reuss AZ (1929) Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z Angew Math Mech 9:49–58. https://doi.org/10.1002/zamm.19290090104

    Article  CAS  Google Scholar 

  22. Corso AD, Conte AM (2005) Spin-orbit coupling with ultrasoft pseudopotentials: application to Au and Pt. Phys Rev B 71:115106. https://doi.org/10.1103/PhysRevB.71.115106

    Article  CAS  Google Scholar 

  23. Bader RWF (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Book  Google Scholar 

  24. Baroni S, de Gironcoli S, Corso AD, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515. https://doi.org/10.1103/RevModPhys.73.515

    Article  CAS  Google Scholar 

  25. Giannozzi P, Baroni S (1994) Vibrational and dielectric properties of C60 from density-functional perturbation theory. J Chem Phys 100:8537–8539. https://doi.org/10.1063/1.466753

    Article  CAS  Google Scholar 

  26. Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors and interatomic force constants from density-functional perturbation theory. Phys Rev B 55:10355. https://doi.org/10.1103/PhysRevB.55.10355

    Article  CAS  Google Scholar 

  27. Sun Y, Yang A, Duan Y, Shen L, Peng M, Qi H (2022) Electronic, elastic, and thermal properties, fracture toughness, and damage tolerance of TM5Si3B (TM= V and Nb) MAB phases. Int J Refract Met Hard Mater 103:105781. https://doi.org/10.1016/j.ijrmhm.2022.105781

    Article  CAS  Google Scholar 

  28. Madelung O (2004) Semiconductors: data handbook. Springer, Berlin

    Book  Google Scholar 

  29. Pereira PB, Sergueev I, Gorsse S, Dadda J, Muller E, Hermann RP (2013) Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys Stat Sol B 250:1300–1307. https://doi.org/10.1002/pssb.201248412

    Article  CAS  Google Scholar 

  30. Okoye CMI (2002) Electronic and optical properties of SnTe and GeTe. J Phys: Condens Matter 14:8625. https://doi.org/10.1088/0953-8984/14/36/318

    Article  CAS  Google Scholar 

  31. Akinlami JO, Adebayo GA, Omeike MO, Akindiilete JA, Abdulfatai LO (2018) Electronic properties and the phonon band structure of PbTe. Comput Condens Matter 15:90–94. https://doi.org/10.1016/j.cocom.2017.10.005

    Article  Google Scholar 

  32. Zein NE, Zinenko VI, Fedorov AS (1992) Ab initio calculations of phonon frequencies and dielectric constants in A4B6 compounds. Phys Lett A 164:115–119. https://doi.org/10.1016/0375-9601(92)90916-A

    Article  CAS  Google Scholar 

  33. Petersen JE, Scolfaro LM, Myers TH (2014) Elastic and mechanical properties of intrinsic and doped PbSe and PbTe studied by first-principles. Mater Chem Phys 146:472–477. https://doi.org/10.1016/j.matchemphys.2014.03.055

    Article  CAS  Google Scholar 

  34. Lach-hab M, Papaconstantopoulos DA, Mehl MJ (2002) Electronic structure calculations of lead chalcogenides PbS, PbSe, PbTe. J Phys Chem Solids 63:833–841. https://doi.org/10.1016/S0022-3697(01)00237-2

    Article  CAS  Google Scholar 

  35. Lejaeghere K, VanSpeybroeck V, Oost GV, Cottenier S (2014) Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit Rev Solid State Mater Sci 39:1–24. https://doi.org/10.1080/10408436.2013.772503

    Article  CAS  Google Scholar 

  36. Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104. https://doi.org/10.1103/PhysRevB.90.224104

    Article  CAS  Google Scholar 

  37. Every AG, McCurdy AK (1992) In: Nelson DF (eds) Second and higher order elastic constants. Springer-Verlag, Berlin. https://doi.org/10.1007/b44185

  38. Chattopadhyaya S, Sarkar U, Debnath B, Debbarma M, Ghosh D, Chanda S et al (2019) Structural, elastic and optoelectronic characteristics of BexZn1-xS, BexZn1-xSe and BexZn1-xTe alloys-a density functional based FP-LAPW study. Comput Condens Matter 20:e00384. https://doi.org/10.1016/j.cocom.2019.e00384

    Article  Google Scholar 

  39. Kittel C (2005) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  40. Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurements. McGraw-Hill, New York

    Google Scholar 

  41. Siethoff H (1997) Debye temperature, self-diffusion and elastic constants of intermetallic compounds. Intermetallics 5:625–632. https://doi.org/10.1016/S0966-9795(97)00037-X

    Article  CAS  Google Scholar 

  42. Angsten T, Mayeshiba T, Wu H, Morgan D (2014) Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures. New J Phys 16:015018. https://doi.org/10.1088/1367-2630/16/1/015018

    Article  CAS  Google Scholar 

  43. Varotsos P, Alexopoulos K (1977) The curvature in conductivity plots of alkali halides as a consequence of anharmonicity. J Phys Chem Solids 38:997–1001. https://doi.org/10.1016/0022-3697(77)90201-3

    Article  CAS  Google Scholar 

  44. Yu ZY, Deng HX, Wu HZ, Li SS, Wei SH, Luo JW (2015) The origin of electronic band structure anomaly in topological crystalline insulator group-IV tellurides. npj Computat Mater 1:15001. https://doi.org/10.1038/npjcompumats.2015.1

    Article  CAS  Google Scholar 

  45. Kannaujiya RKM, Kumar A, Khimani J, Chaki SH, Sinh S, Chauhan M et al (2020) Growth and characterizations of tin telluride (SnTe) single crystals. Eur Phys J Plus 135:47. https://doi.org/10.1140/epjp/s13360-019-00022-1

    Article  CAS  Google Scholar 

  46. Tan XJ, Shao HZ, He J, Liu GQ, Xu JT, Jiang J et al (2016) Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg). Phys Chem Chem Phys 18:7141–7147. https://doi.org/10.1039/C5CP07620J

    Article  CAS  PubMed  Google Scholar 

  47. Wang N, West D, Liu J, Li J, Yan Q, Gu BL et al (2014) Electronic properties of SnTe-class topological crystalline insulator materials. Phys Rev B 89:045142. https://doi.org/10.1088/1674-1056/25/11/117313

    Article  CAS  Google Scholar 

  48. Moshwan R, Liu WD, Shi XL, Wang YP, Zou J, Chen ZC (2019) Realizing high thermoelectric properties of SnTe via synergistic band engineering and structure engineering. Nano Energy 65:104056. https://doi.org/10.1016/j.nanoen.2019.104056

    Article  CAS  Google Scholar 

  49. Nimtz G, Schlicht B, Dornhaus R (1985) Narrow-gap semiconductors. Springer, New York

    Google Scholar 

  50. Zhang Y, Ke X, Chen C, Yang Y, Kent PRC (2009) Thermodynamic properties of PbTe, PbSe and PbS: first-principles study. Phys RevB 80:024304. https://doi.org/10.1103/PhysRevB.80.024304

    Article  CAS  Google Scholar 

  51. Joshi KB, Paliwal U, Sharma BK (2011) Hybrid functionals and electronic structure of high-pressure phase of CdO. Phys Stat Sol B 248:1248–1252. https://doi.org/10.1002/pssb.201046332

    Article  CAS  Google Scholar 

  52. Maurya V, Joshi KB (2019) Electron localization function and compton profiles of Cu2O. J Phys Chem A 123:1999–2007. https://doi.org/10.1021/acs.jpca.8b12102

    Article  CAS  PubMed  Google Scholar 

  53. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  54. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  55. Muscat J, Wander A, Harrison NM (2001) On the prediction of band gaps from hybrid functional theory. Chem Phys Lett 342:397–401. https://doi.org/10.1016/S0009-2614(01)00616-9

    Article  CAS  Google Scholar 

  56. Herman F, Kortum R, Ortenburger I, Van Dyke JP (1968) Relativistic band structure Of GeTe, SnTe, PbTe, PbSe, and PbS. J Phys Colloques 29:C4-62-C4-77. https://doi.org/10.1051/jphyscol:1968410

  57. Lach-hab M, Keegan M, Papaconstantopoulos DA, Mehl MJ (2000) Electronic structure calculations of PbTe. J Phys Chem Solids 61:1639–1645. https://doi.org/10.1016/S0022-3697(00)00045-7

    Article  CAS  Google Scholar 

  58. Hsieh T, Lin H, Liu J, Duan W, Bansil A, Fu L (2012) Topological crystalline insulators in the SnTe material class. Nat Commun 3:982. https://doi.org/10.1038/ncomms1969

    Article  CAS  PubMed  Google Scholar 

  59. A–Puente P, Fahy S, Grüning MG (2020) GW study of pressure-induced topological insulator transition in group-IV tellurides. PhysRevRes 2:043105. https://doi.org/10.1103/PhysRevResearch.2.043105

    Article  Google Scholar 

  60. Paliwal U, Joshi KB (2011) A theoretical study of pressure-induced phase transitions and electronic band structure of anti-A-sesquioxide type γ-Be3N2. J Phys D: Appl Phys 44:255501. https://doi.org/10.1088/0022-3727/44/25/255501

    Article  CAS  Google Scholar 

  61. Tung YV, Cohen ML (1969) Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Phys Rev 180:823. https://doi.org/10.1103/PhysRev.180.823

    Article  CAS  Google Scholar 

  62. Pal S, Arora R, Roychowdhury S, Harnagea L, Saurabh K, Shenoy S et al (2020) Pressure-induced phase transitions in the topological crystalline insulator SnTe and its comparison with semiconducting SnSe: Raman and first-principles studies. Phys Rev B 101:155202. https://doi.org/10.1103/PhysRevB.101.155202

    Article  CAS  Google Scholar 

  63. Jiming A, Subedi A, Singh DJ (2008) Ab initio phonon dispersions for PbTe. Solid State Commun 148:417–419. https://doi.org/10.1016/j.ssc.2008.09.027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The review of literature and problem formulation is done by J. Kumar. The plan of the calculation and data generation is done by J. Kumar and P. Tanwar under the supervision of U. Paliwal. The draft manuscript is prepared by J. Kumar and U. Paliwal. The compilation of results, presentation, editing and interpretation of results is done by K.B. Joshi.

Corresponding author

Correspondence to Uttam Paliwal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Tanwar, P., Paliwal, U. et al. Ab initio study of elastic, electronic, and vibrational properties of SnTe and PbTe. J Mol Model 29, 335 (2023). https://doi.org/10.1007/s00894-023-05742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05742-x

Keywords

Navigation