Skip to main content
Log in

In-plane hysteresis of permalloy nanorings: a study of micromagnetic simulation

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Magnetic hysteresis of isotropic permalloy nanorings with outer diameter 200 nm and thickness 20 nm has been studied. The inner diameter is varied from 0 to 190 nm to accommodate wide range of samples from nanodisk to thin nanorings. Micromagnetic simulation of in-plane hysteresis curve of these nanorings reveals that the magnetic properties change gradually with the change of inner diameter. The hysteresis loss indicated by the area of the hysteresis loop, increases gradually with the increase in inner radius up to d in = 174 nm. For inner diameter of 176 nm, the loop area decreases drastically and remains so for up to d in = 180 nm. After that, a small increment of d in results in a large increment of loop area. The remanent states are found to be vortex states for d in = 0–180 nm and onion states for d in > 180 nm. The changes are attributed to two parameters mainly: exchange energy and demagnetization energy. These two parameters depend on inner curvature of the ring, which is treated as a variable in this simulation work. The changes in loop area have been discussed in light of variation of these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A P Guimaraes Principles of Nanomagnetism 1st edn. (Berlin-Heidelberg : Springer) (ed.) P Avouris, B Bhushan, D Bimberg, K von Klitzing, H Sakaki and R Wiesendanger (2009)

  2. M Dimian and C Lefter Adv. Elect. Computer Engin. 13 53 (2013)

    Article  Google Scholar 

  3. J Fidler and T Schrefl J. Phys. D Appl. Phys. 33 R135 (2000)

    Article  ADS  Google Scholar 

  4. Y G Yoo, M Klaui, C A F Vaz, L J Heyderman and J A C Bland Appl. Phys. Lett. 82 2470 (2003)

    Article  ADS  Google Scholar 

  5. J L Palma, C Morales-Concha, B Leighton, D Altbir and J Escrig J. Mag. Mag. Mater. 324 637 (2012)

    Article  ADS  Google Scholar 

  6. U Dzienisiuk, M Kisielewski and A Maziewski J. Mag. Mag. Mater. 346 84 (2013).

    Article  ADS  Google Scholar 

  7. H Forster, T Schrefl, W Scholz, D Suess, V Tsiantos and J Fidler J. Mag. Mag. Mater. 249 181 (2002)

    Article  ADS  Google Scholar 

  8. Q F Xiao, J Rudge, B C Choi, Y K Hong and G Donohoe Appl. Phys. Lett. 89 262507 (2006)

    Article  ADS  Google Scholar 

  9. N Kikuchi et al. J. Appl. Phys. 90 6548 (2001)

    Article  ADS  Google Scholar 

  10. R Pulwey, M Rahm, J Biberger and D Weiss IEEE Trans. Magn. 37 2076 (2001)

    Article  Google Scholar 

  11. A T M K Jamil and H Noguchi Indian J. Phys. 85 737 (2011)

  12. A C Mishra Indian J. Phys. 88 367 (2014)

  13. G Gubbiotti, G Carlotti, F Nizzoli, R Zivieri, T Okuno and T Shinjo IEEE Trans. Magn. 38 2532 (2002)

    Article  ADS  Google Scholar 

  14. T Okuno, K Mibu and T Shinjo J. Appl. Phys. 95 3612 (2004)

    Article  ADS  Google Scholar 

  15. Y Liu, S Gliga, R Hertel and C M Schneider Appl. Phys. Lett. 91 112501 (2007)

    Google Scholar 

  16. C Lefter and M Dimian 11th International Conference on Development And Application Systems (Suceava, Romania) p 122 (2012)

  17. J Sheth, D Venkateswarlu and P S A Kumar Micromagnetic study of magnetization reversal and dipolar interactions in NiFe nano disks (AIP Conference Proc. 1512) (New York: AIP) p 420 (2013)

  18. Z Liu, R D Sydora and M R freeman Phys. Rev. B 77 174410 (2008)

    Article  ADS  Google Scholar 

  19. C A F Vaz, M Klaui, J A C Bland, L J Heyderman, C David and F Nolting Nuclear Instr. Methods Phys. Res. B 246 13 (2006)

    Article  ADS  Google Scholar 

  20. J Rothman et al. Phys. Rev. Lett. 86 1098 (2001)

    Article  ADS  Google Scholar 

  21. J J Torres-Heredia, F Lopez-Urias and E Munoz-Sandoval J. Magn. Magn. Mater. 294 e1(2005)

    Article  ADS  Google Scholar 

  22. M Beleggia, J W Lau, M A Schofield, Y Zhu, S Tandon and M De Graef J. Magn. Magn. Mater. 301 131(2006)

    Article  ADS  Google Scholar 

  23. P Landeros, J Escrig, D Altbir, M Bahiana and J. d’Albuquerque e Castro J. Appl. Phys. 100 044311(2006)

  24. M Klaui et al. J. Magn. Magn. Mater. 272–276 1631 (2004)

    Article  Google Scholar 

  25. A O Adeyeye, N Singh and S Goolaup J. Appl. Phys. 98 094301 (2005)

    Article  ADS  Google Scholar 

  26. S H Chung, D T Pierce and J Unguris Ultramicroscopy 110 177 (2010)

    Article  Google Scholar 

  27. T Fischbacher, M Franchin, G Bordignon and H Fangohr IEEE Trans. Magn. 43 2896 (2007)

    Article  ADS  Google Scholar 

  28. P Ramachandran and G Varoquaux IEEE Computing Sci. Engin. 13 40 (2011)

    Article  Google Scholar 

  29. J Raabe, R Pulwey, R Sattler, T Schweinböck, J Zweck and D Weiss J. Appl. Phys. 88 4437 (2000)

    Article  ADS  Google Scholar 

  30. F Boust, N Vukadinovic and S Labbe J. Magn. Magn. Mater. 272–276 708 (2004)

    Article  Google Scholar 

  31. BD Cullity and C D Graham Introduction to magnetic materials 2nd edn. (New Jersey : IEEE Press) (ed.) L Hanzo p 276 (1972)

  32. J Mejía-López et al. Phys. Rev. B 81 184417 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.C. In-plane hysteresis of permalloy nanorings: a study of micromagnetic simulation. Indian J Phys 89, 915–921 (2015). https://doi.org/10.1007/s12648-015-0667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0667-y

Keywords

PACS No.

Navigation