Skip to main content
Log in

Tunable microwave susceptibility of thin truncated conical permalloy nanodisks : a micromagnetic investigation

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Dynamic susceptibility of thin truncated conical permalloy nanodisk with height 20 nm is simulated using micromagnetic simulations. Starting from a relaxed magnetic vortex state, the effect of tapering on the resonant modes is analyzed by changing the bottom radius (R = 50 nm to 100 nm) and top radius (r = 10 nm to R − 10 nm) of the conical nanodisk. When an in-plane excitation field pulse is applied, the lowest resonant peak frequency increases with increase in r. This mode is originated due to vortex core translation and the variation of the resonant peak with r is well explained using Thiele’s equation. Other resonant modes appear at higher excitation frequencies which are identified as azimuthal modes. When an out-of-plane excitation field is applied, all the spin wave modes appear to be axially symmetric. Appearance of new resonant modes and shifting of the resonant frequency is recorded by changing either of the parameter r or R for both the excitation field directions. The spatial distribution of FFT of magnetization at each resonant mode links the area of nanodisk that has maximum contribution to each mode and combining this with average center of magnetization perturbation, shifting of resonance frequency is explained successfully. The findings from this study prove that tunable resonant frequency can be achieved by tapering of truncated conical nanodisks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Parkin S, Yang SH (2015) Memory on the racetrack. Nat Nanotechnol 10(3):195–198. https://doi.org/10.1038/nnano.2015.41

    Article  CAS  Google Scholar 

  2. Dieny B, Prejbeanu IL, Garello K et al (2020) Opportunities and challenges for spintronics in the microelectronics industry. Nat Electron 3(8):446–459. https://doi.org/10.1038/s41928-020-0461-5

    Article  Google Scholar 

  3. Cowburn R (2002) Magnetic nanodots for device applications. J Magn Magn Mater 242:505–511. https://doi.org/10.1016/S0304-8853(01)01086-1

    Article  Google Scholar 

  4. Eichwald I, Bartel A, Kiermaier J et al (2012) Nanomagnetic logic: error-free, directed signal transmission by an inverter chain. IEEE Trans Magn 48(11):4332–4335. https://doi.org/10.1109/TMAG.2012.2196030

    Article  CAS  Google Scholar 

  5. Liu J, Su D, Wu K et al (2020) High-moment magnetic nanoparticles. J Nanoparticle Res 22(3):1–16. https://doi.org/10.1007/s11051-020-4758-0

    Article  CAS  Google Scholar 

  6. Merbouche H, Collet M, Evelt M et al (2021) Frequency filtering with a magnonic crystal based on nanometer-thick yttrium iron garnet films. ACS Appl Nano Mater 4(1):121–128. https://doi.org/10.1021/acsanm.0c02382

    Article  CAS  Google Scholar 

  7. Guerra Y, Viana BC, Padron-Hernandez E (2022) FMR by micromagnetic simulation in modulated FeCo nanowires. J Supercond Nov Magn 35(3):825–831. https://doi.org/10.1007/s10948-021-06114-3

    Article  CAS  Google Scholar 

  8. Saavedra E, Saez G, Diaz P et al (2019) Dynamic susceptibility of modulated magnetic nanowires. AIP Adv 9(6). https://doi.org/10.1063/1.5091813

  9. Bisero D, Cremon P, Madami M et al (2011) Effect of dipolar interaction on the magnetization state of chains of rectangular particles located either head-to-tail or side-by-side. J Nanoparticle Res 13(11):5691–5698. https://doi.org/10.1007/s11051-011-0288-0

    Article  CAS  Google Scholar 

  10. Krone P, Makarov D, Cattoni A et al (2011) Investigation of the magnetization reversal of a magnetic dot array of Co/Pt multilayers. J Nanoparticle Res 13(11):5587–5593. https://doi.org/10.1007/s11051-010-0123-z

    Article  CAS  Google Scholar 

  11. Guimaraes AP (2009) Principles of nanomagnetism, vol 7. Springer, New York. https://doi.org/10.1007/978-3-319-59409-5

    Book  Google Scholar 

  12. Mu C, Jing J, Dong J et al (2019) Static and dynamic characteristics of magnetism in permalloy oval nanoring by micromagnetic simulation. J Magn Magn Mater 474:301–304. https://doi.org/10.1016/j.jmmm.2018.11.049

    Article  CAS  Google Scholar 

  13. XianYu ZN, Du A (2020) Dynamic susceptibility in torus nanoring with canted external dc magnetic field. J Magn Magn Mater 511:166,955. https://doi.org/10.1016/j.jmmm.2020.166955

    Article  CAS  Google Scholar 

  14. Boust F, Vukadinovic N, Labbe S (2004) High-frequency susceptibility of soft ferromagnetic nanodots. J Magn Magn Mater 272:708–710. https://doi.org/10.1016/j.jmmm.2003.11.257

    Article  CAS  Google Scholar 

  15. Vigo-Cotrina H, Guimaraes A (2021) Spin wave modes of nanoellipses with a magnetic radial vortex configuration. J Magn Magn Mater 518:167,377. https://doi.org/10.1016/j.jmmm.2020.167377

    Article  CAS  Google Scholar 

  16. Taurel B, Valet T, Naletov VV et al (2016) Complete mapping of the spin-wave spectrum in a vortex-state nanodisk. Phys Rev B 93(18):184,427. https://doi.org/10.1103/PhysRevB.93.184427

    Article  CAS  Google Scholar 

  17. Peng Y, Zhao G, Morvan F et al (2017) Dynamic micromagnetic simulation of the magnetic spectrum of permalloy nanodot array with vortex state. J Magn Magn Mater 422:57–60. https://doi.org/10.1016/j.jmmm.2016.08.060

    Article  CAS  Google Scholar 

  18. Luo J, Zheng H, Chen W et al (2019a) Conical-shaped hexagonal barium ferrite nanodot arrays on an alumina substrate based on an ultrathin alumina mask method. J Magn Magn Mater 489:165,449. https://doi.org/10.1016/j.jmmm.2019.165449

    Article  CAS  Google Scholar 

  19. Luo J, Zheng H, Deng J et al (2019b) Micromagnetic simulation of dynamic magnetic susceptibility and magnetostatic interaction fields of conical-shaped barium ferrite nanodot arrays. J Phys D Appl Phys 52(40):405,001. https://doi.org/10.1088/1361-6463/ab3137

    Article  CAS  Google Scholar 

  20. Sahu R, Mishra AC (2022) Magnetization reversal and ground states in thin truncated conical nanodisks: analytical and micromagnetic modelling approach. J Magn Magn Mater 556:169,356. https://doi.org/10.1016/j.jmmm.2022.169356

    Article  CAS  Google Scholar 

  21. Ma Y, Song C, Jin C et al (2019) Microwave-driven dynamic switching of the radial vortex in a nanodot by micromagnetic simulation. J Phys D Appl Phys 52(19):195,001. https://doi.org/10.1088/1361-6463/ab0356

    Article  CAS  Google Scholar 

  22. Kumar D, Adeyeye A (2017) Techniques in micromagnetic simulation and analysis. J Phys D Appl Phys 50(34):343,001. https://doi.org/10.1088/1361-6463/aa7c04

    Article  CAS  Google Scholar 

  23. Iacob N, Kuncser A, Comanescu C et al (2020) Optimization of magnetic fluid hyperthermia with respect to nanoparticle shape-related parameters: case of magnetite ellipsoidal nanoparticles. J Nanoparticle Res 22(6):1–10. https://doi.org/10.1007/s11051-020-04842-6

    Article  CAS  Google Scholar 

  24. Schoberl J (1997) NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1):41–52. https://doi.org/10.1007/s007910050004

    Article  Google Scholar 

  25. Renuka Balakrishna A, James RD (2021) A solution to the permalloy problem—a micromagnetic analysis with magnetostriction. Appl Phys Lett 118(21):212,404. https://doi.org/10.1063/5.0051360

    Article  CAS  Google Scholar 

  26. Coey JMD (2001) Materials for spin electronics. Springer, Berlin, pp 277–297. https://doi.org/10.1007/3-540-45258-3_12

    Book  Google Scholar 

  27. Bozorth RM (1993) Ferromagnetism. D. Van Nostrand Company

  28. Valletta R, Guthmiller G, Gorman G (1991) Relation of thickness and some physical properties of nife thin films. J Vacuum Sci Technol A Vacuum Surf Films 9(4):2093–2098. https://doi.org/10.1116/1.577232

    Article  CAS  Google Scholar 

  29. Wei J, Zhu Z, Song C et al (2016) Annealing influence on the exchange stiffness constant of permalloy films with stripe domains. J Phys D Appl Phys 49(26):265,002. https://doi.org/10.1088/0022-3727/49/26/265002

    Article  CAS  Google Scholar 

  30. Sipr O, Mankovsky S, Ebert H (2019) Spin wave stiffness and exchange stiffness of doped permalloy via ab initio calculations. Phys Rev B 100(2):024,435. https://doi.org/10.1103/PhysRevB.100.024435

    Article  CAS  Google Scholar 

  31. Venkat G, Venkateswarlu D, Joshi R et al (2018) Enhanced spin wave propagation in magnonic rings by bias field modulation. AIP Adv 8(5):056,006. https://doi.org/10.1063/1.5006576

    Article  Google Scholar 

  32. Rao S, Rhensius J, Bisig A et al (2015) Time-resolved imaging of pulse-induced magnetization reversal with a microwave assist field. Sci Rep 5(1):1–8. https://doi.org/10.1038/srep10695

    Article  Google Scholar 

  33. Fischbacher T, Franchin M, Bordignon G et al (2007) A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: NMAG. IEEE Trans Magn 43 (6):2896–2898. https://doi.org/10.1109/TMAG.2007.893843

    Article  Google Scholar 

  34. Baker A, Beg M, Ashton G et al (2017) Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations. J Magn Magn Mater 421:428–439. https://doi.org/10.1016/j.jmmm.2016.08.009

    Article  CAS  Google Scholar 

  35. McMichael RD, Stiles MD (2005) Magnetic normal modes of nanoelements. J Appl Phys 97(10):10J901. https://doi.org/10.1063/1.1852191

    Article  CAS  Google Scholar 

  36. Djuhana D, Rohman L, Kim D (2017) Micromagnetic calculation of the dynamic susceptibility spectra in LSMO ferromagnetic nanopillars. J Magn 22(3):364–368. https://doi.org/10.4283/JMAG.2017.22.3.364

    Article  Google Scholar 

  37. Ramachandran P, Varoquaux G (2011) Mayavi: 3D visualization of scientific data. Comput Sci Eng 13(2):40–51. https://doi.org/10.1109/MCSE.2011.35

    Article  Google Scholar 

  38. Ahrens J, Geveci B, Law C (2005) Paraview: An end-user tool for large data visualization. Vis Handbook 717(8)

  39. Ayachit U (2015) The paraview guide: a parallel visualization application. Kitware, Inc

  40. Boust F, Vukadinovic N (2004) Micromagnetic simulations of vortex-state excitations in soft magnetic nanostructures. Phys Rev B 70(17):172,408. https://doi.org/10.1103/PhysRevB.70.172408

    Article  CAS  Google Scholar 

  41. Feldtkeller E, Thomas H (1965) Struktur und energie von blochlinien in dunnen ferromagnetischen schichten. Phys der kondensierten Materie 4(1):8–14. https://doi.org/10.1007/BF02423256

    Article  CAS  Google Scholar 

  42. Guslienko KY, Ivanov B, Novosad V et al (2002) Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J Appl Phys 91(10):8037–8039. https://doi.org/10.1063/1.1450816

    Article  CAS  Google Scholar 

  43. Guslienko KY, Han X, Keavney D et al (2006) Magnetic vortex core dynamics in cylindrical ferromagnetic dots. Phys Rev Lett 96(6):067,205. https://doi.org/10.1103/PhysRevLett.96.067205

    Article  CAS  Google Scholar 

  44. Park J, Crowell P (2005) Interactions of spin waves with a magnetic vortex. Phys Rev Lett 95(16):167,201. https://doi.org/10.1103/PhysRevLett.95.167201

    Article  CAS  Google Scholar 

  45. Neudecker I, Perzlmaier K, Hoffmann F et al (2006) Modal spectrum of permalloy disks excited by in-plane magnetic fields. Phys Rev B 73(13):134,426. https://doi.org/10.1103/PhysRevB.73.134426

    Article  CAS  Google Scholar 

  46. Guslienko KY, Slavin AN, Tiberkevich V et al (2008) Dynamic origin of azimuthal modes splitting in vortex-state magnetic dots. Phys Rev Lett 101(24):247,203. https://doi.org/10.1103/PhysRevLett.101.247203

    Article  CAS  Google Scholar 

  47. Liu Y, Lake RK, Zang J (2018) Shape dependent resonant modes of skyrmions in magnetic nanodisks. J Magn Magn Mater 455:9–13. https://doi.org/10.1016/j.jmmm.2017.07.007

    Article  CAS  Google Scholar 

  48. Heinonen O, Schreiber D, Petford-Long A (2007) Micromagnetic modeling of spin-wave dynamics in exchange-biased permalloy disks. Phys Rev B 76 (14):144,407. https://doi.org/10.1103/PhysRevB.76.144407

    Article  CAS  Google Scholar 

  49. Saavedra E, Palma JL, Escrig J (2022) Dynamic susceptibility spectra of stadium-shaped and elliptical nanostructures. J Magn Magn Mater 541:168,493. https://doi.org/10.1016/j.jmmm.2021.168493

    Article  CAS  Google Scholar 

  50. Khanal S, Sherpa P, Spinu L (2019) Study of static and dynamic properties of planar dumbbell shaped structure of Ni80Fe20. AIP Adv 9(12):125,030. https://doi.org/10.1063/1.5129760

    Article  CAS  Google Scholar 

  51. Zaspel C, Wright ES, Galkin AY et al (2009) Frequencies of radially symmetric excitations in vortex state disks. Phys Rev B 80(9):094,415. https://doi.org/10.1103/PhysRevB.80.094415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaresh Chandra Mishra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rahul Sahu, Prerit Tandon and Amaresh Chandra Mishra contributed equally to this work.

Appendix A: Calculation of vortex mode frequency

Appendix A: Calculation of vortex mode frequency

Using Feldtkeller model, [41] the magnetization of the vortex state is modelled as

$$ \vec{M}=M_{0}\sin\theta\hat{\varphi}+M_{0}\cos\theta\hat{z} $$

in which

$$ \cos\theta=e^{-2\rho^{2}\beta^{2}} $$

Now, the gyrovector is represented in components of gyrocoupling tensor as

$$ G=G_{xy}=\int d\tau g_{xy} $$
(A1)

The antisymmetric gyrocoupling density tensor is calculated as

$$ g_{xy}=\frac{M_{0}}{\gamma}\vec{m}\cdot\left( \partial_{x}\vec{m}\times\partial_{y}\vec{m}\right) $$
(A2)
$$ \begin{array}{@{}rcl@{}} \frac{\partial\vec{m}}{\partial x}&=&\hat{x}\Bigg[\frac{-4\beta^{2}\rho e^{-4\rho^{2}\beta^{2}} }{\sqrt{1-e^{-2\rho^{2}\beta^{2}}}}\tan\varphi+\frac{\sqrt{1-e^{-4\rho^{2}\beta^{2}}}}{\rho}\cot\varphi\Bigg] \\ &&+\hat{y}\Bigg[\frac{4\beta^{2}\rho e^{-4\rho^{2}\beta^{2}} }{\sqrt{1-e^{-4\rho^{2}\beta^{2}}}}+\frac{\sqrt{1-e^{-4\rho^{2}\beta^{2}}}}{\rho}\Bigg] \\ &&+\hat{z}\left[4\beta^{2}\rho e^{-2\rho^{2}\beta^{2}}\sec\varphi\right] \end{array} $$
$$ \begin{array}{@{}rcl@{}} \frac{\partial\vec{m}}{\partial y}&=&\hat{x}\Bigg[\frac{-4\beta^{2}\rho e^{-4\rho^{2}\beta^{2}} }{\sqrt{1-e^{-4\rho^{2}\beta^{2}}}}-\frac{\sqrt{1-e^{-4\rho^{2}\beta^{2}}}}{\rho}\Bigg] \\ &&+\hat{y}\Bigg[\frac{4\beta^{2}\rho e^{-4\rho^{2}\beta^{2}} }{\sqrt{1-e^{-4\rho^{2}\beta^{2}}}}\cot\varphi-\frac{\sqrt{1-e^{-4\rho^{2}\beta^{2}}}}{\rho}\tan\varphi\Bigg] \\ &&+\hat{z}\left[-4\beta^{2}\rho e^{-4\rho^{2}\beta^{2}}\text{cosec}\varphi\right] \end{array} $$
$$ \begin{array}{@{}rcl@{}} \left( \partial_{x}\vec{m}\times\partial_{y}\vec{m}\right)_{x}&=&-\hat{x}4\beta^{2}\rho e^{-2\rho^{2}\beta^{2}}\sqrt{1-e^{-4\rho^{2}\beta^{2}}}\text{cosec} \varphi\sec^{2}\varphi\\ (\partial_{x}\vec{m}\times\partial_{y}\vec{m})_{y}&=&\hat{y}4\beta^{2}\rho e^{-2\rho^{2}\beta^{2}}\sqrt{1-e^{-4\rho^{2}\beta^{2}}}\text{cosec}^{2} \varphi\sec\varphi\\ (\partial_{x}\vec{m}\times\partial_{y}\vec{m})_{z}&=&\hat{z}4\beta^{2}\rho e^{-4\rho^{2}\beta^{2}}\text{cosec}^{2} \varphi\sec^{2}\varphi \end{array} $$
(A3) (A4) (A5)

Substitute the above equations in Eq. A2 and by solving, we get

$$ g_{xy}=\frac{M_{0}}{\gamma}\left( 1-e^{-4\rho^{2}\beta^{2}}+4\beta^{2}e^{-6\rho^{2}\beta^{2}}\right)\text{cosec}^{2} \varphi\sec^{2}\varphi $$
(A6)

Therefore, the gyrovector is obtained by substituting Eqs. A6 in A1

$$ \begin{array}{@{}rcl@{}} G&=&16 \frac{M_{0}}{\gamma} {{\int}_{0}^{R}} d\rho {{\int}_{0}^{h}} dz \rho \Big(1-e^{-4\rho^{2}\beta^{2}}\\&&+4\beta^{2} e^{-6\rho^{2}\beta^{2}}\Big) \Bigg(2\pi+\sum\limits_{k=1}^{\infty}\frac{(2k-1)!!}{(2k)!!}\pi \Bigg) \end{array} $$
(A7)

Consider the vortex is shifted by a distance X along the x-axis, then the new centre is at (ϱ,φ) where as the original centre is at (ρ,ϕ) such that

$$ \begin{array}{@{}rcl@{}} {\varrho}^{2}=\rho^{2}+X^{2}-2\rho X \cos\varphi \\ \phi=\cos^{-1}\Bigg(\frac{\rho\cos\varphi-X}{{\varrho}}\Bigg) \end{array} $$

The magnetization is rewritten as

$$ \delta\vec{m}=\sqrt{1-e^{-4\rho^{2}\beta^{2}}}\Bigg(\frac{-X\sin\varphi}{\sqrt{\rho^{2}+X^{2}-2\rho X \cos\varphi}}\Bigg)\hat{\rho} $$
(A8)

Now, the exchange energy can be calculated by using

$$ \delta E_{ex}=A{\int}_{V} \left[(\nabla\delta m_{x})^{2}+(\nabla\delta m_{y})^{2}+(\nabla\delta m_{z})^{2}\right]dV $$
(A9)

Using Eq. A8 and solving

$$ \begin{array}{@{}rcl@{}} \nabla\delta m_{x}&=&\Bigg[\frac{4\rho\beta^{2} e^{-4\rho^{2}\beta^{2}}}{\sqrt{1-e^{-4\rho^{2}\beta^{2}}}}\Bigg(\frac{-X\sin\varphi}{\sqrt{\rho^{2}+X^{2}-2\rho X\cos\varphi}}\Bigg)\cos\varphi \\ &&-\sqrt{1-e^{-4\rho^{2}\beta^{2}}}\Bigg(\frac{-\rho X\sin\varphi}{(\rho^{2}+X^{2}-2\rho X\cos\varphi)^{3/2}}\Bigg)\cos\varphi\Bigg]\hat{\rho} \\ &&+\Bigg[\sqrt{1-e^{-4\rho^{2}\beta^{2}}}\Bigg(\frac{-X\cos 2\varphi}{\sqrt{\rho^{2}+X^{2}-2\rho X\cos\varphi}}\Bigg)\Bigg]\hat{\varphi} \end{array} $$
(A10)
$$ \begin{array}{@{}rcl@{}} \nabla\delta m_{y}&=&\Bigg[\frac{4\rho\beta^{2} e^{-4\rho^{2}\beta^{2}}}{\sqrt{1-e^{-4\rho^{2}\beta^{2}}}}\Bigg(\frac{-X\sin^{2}\varphi}{\sqrt{\rho^{2}+X^{2}-2\rho X\cos\varphi}}\Bigg)\\ &&-\sqrt{1-e^{-4\rho^{2}\beta^{2}}}\Bigg(\frac{-\rho X\sin^{2}\varphi}{(\rho^{2}+X^{2}-2\rho X\cos\varphi)^{3/2}}\Bigg)\Bigg]\hat{\rho} \\ &&+\Bigg[\sqrt{1-e^{-4\rho^{2}\beta^{2}}}\Bigg(\frac{-X\sin 2\varphi}{\sqrt{\rho^{2}+X^{2}-2\rho X\cos\varphi}}\Bigg)\Bigg]\hat{\varphi}\\ \nabla\delta m_{z}&=&0 \end{array} $$
(A11) (A12)

By substituting the above equations in Eq. A9, we have

$$ \begin{array}{@{}rcl@{}} \delta E_{ex}&=&A {\int}_{V} \Bigg[\frac{16\rho^{2}\beta^{4} e^{-8\rho^{2}\beta^{2}}}{1-e^{-4\rho^{2}\beta^{2}}}\Bigg(\frac{X^{2}\sin^{2}\varphi}{\rho^{2}+X^{2}-2\rho X\cos\varphi}\Bigg) \\ &&+\left( 1-e^{-4\rho^{2}\beta^{2}}\right)\Bigg(\frac{\rho^{2} X^{2}\sin^{2}\varphi}{\left( \rho^{2}+X^{2}-2\rho X\cos\varphi\right)^{3}}\Bigg) \\ &&-4 \rho^{2}\beta^{2} e^{-4\rho^{2}\beta^{2}}\Bigg(\frac{X^{2}\sin^{2}\varphi}{\left( \rho^{2}+X^{2}-2\rho X\cos\varphi\right)^{2}}\Bigg) \\ &&+\left( 1-e^{-4\rho^{2}\beta^{2}}\right)\Bigg(\frac{X^{2}}{\rho^{2}+X^{2}-2\rho X\cos\varphi}\Bigg)\Bigg]dV \end{array} $$
(A13)

Let the integrand be considered as

$$ \begin{array}{@{}rcl@{}} E_{0}&=&\Bigg[\frac{16\rho^{2}\beta^{4} e^{-8\rho^{2}\beta^{2}}}{1-e^{-4\rho^{2}\beta^{2}}} \Bigg(\pi\frac{X^{2}}{\rho^{2}+X^{2}}\bigg(1+\frac{\rho^{2} X^{2}}{(\rho^{2}+X^{2})^{2}}\bigg)\Bigg) \\ &&+\left( 1-e^{-4\rho^{2}\beta^{2}}\right)\Bigg(\pi\frac{\rho^{2} X^{2}}{\left( \rho^{2}+X^{2}\right)^{3}}\bigg(1+\frac{6\rho^{2} X^{2}}{\left( \rho^{2}+X^{2}\right)^{2}}\bigg)\Bigg) \\ &&-4 \rho^{2}\beta^{2} e^{-4\rho^{2}\beta^{2}}\Bigg(\pi\frac{X^{2}}{(\rho^{2}+X^{2})^{2}}\bigg(1+\frac{3\rho^{2} X^{2}}{(\rho^{2}+X^{2})^{2}}\bigg)\Bigg) \\ &&+\left( 1-e^{-4\rho^{2}\beta^{2}}\right)\Bigg(2\pi\frac{ X^{2}}{\rho^{2}+X^{2}}\bigg(1+\frac{2\rho^{2} X^{2}}{(\rho^{2}+X^{2})^{2}}\bigg)\Bigg)\Bigg] \end{array} $$

Splitting the limits to consider the curved part of the truncated conical nanodisk

$$ \begin{array}{@{}rcl@{}} \delta E_{ex1}&=&A {{\int}_{0}^{r}} \rho d{\rho{\int}_{0}^{h}} dz E_{0}\\ \delta E_{ex2}&=&A {{\int}_{r}^{R}} \rho d\rho {\int}_{0}^{\big(\frac{R-\rho}{R-r}\big)h} dz E_{0} \end{array} $$
(A14) (A15)

Thus, the exchange energy can be calculated by the summation of Eqs. A14 and A15.

The dipolar energy is given as

$$ E_{dip}=\frac{\mu_{0}}{2}\int \vec{M}(r).\vec{\nabla}U(r)d\nu $$
(A16)

where the potential is

$$ U(r)=-\frac{1}{4\pi}{\int}_{V} \frac{\vec{\nabla}.\vec{M}(r^{\prime})}{\lvert r-r^{\prime}\rvert}dV^{\prime}+\frac{1}{4\pi}{\int}_{S} \frac{\hat{n^{\prime}}.\vec{M}(r^{\prime})}{\lvert r-r^{\prime} \rvert}ds^{\prime} $$
(A17)

The demagnetization energy has no volume contribution, so we calculate the surface demagnetization energy and only the effect of curved surface is considered.

$$ \begin{array}{@{}rcl@{}} \hat{n^{\prime}}.\delta\vec{M}(r^{\prime})&=&M_{0}\frac{h}{\sqrt{h^{2}+(R-r)^{2}}}\sqrt{1-e^{-4\rho^{\prime^{2}}\beta^{2}}}\\ &&\times\Bigg(\frac{-X \sin\varphi^{\prime}}{\sqrt{\rho^{\prime^{2}}+X^{2}-2\rho^{\prime} X \cos\varphi^{\prime}}}\Bigg)\\ U(r)&=&\frac{1}{4\pi}M_{0}\frac{h}{\sqrt{h^{2}+(R-r)^{2}}}{\int}_{S} \frac{\sqrt{1-e^{-4\rho^{\prime^{2}}\beta^{2}}}}{\lvert r-r^{\prime} \rvert}\\ &&\times\Bigg(\frac{-X \sin\varphi^{\prime}}{\sqrt{\rho^{\prime^{2}}+X^{2}-2\rho^{\prime} X \cos\varphi^{\prime}}}\Bigg)ds^{\prime} \end{array} $$

Projecting the area integral onto the x-y plane

$$ \begin{array}{@{}rcl@{}} U(r)&=&\frac{1}{4\pi}M_{0}\frac{h}{\sqrt{h^{2}+(R-r)^{2}}}{\int}_{S} dx^{\prime} dy^{\prime} \frac{\sqrt{1-e^{-4\rho^{\prime^{2}}\beta^{2}}}}{\lvert r-r^{\prime} \rvert} \sec\gamma \\ &&\times \Bigg(\frac{-X \sin\varphi^{\prime}}{\sqrt{\rho^{\prime^{2}}+X^{2}-2\rho^{\prime} X \cos\varphi^{\prime}}}\Bigg) \end{array} $$

By approximating

$$ U(r)\approx-\frac{1}{4\pi}M_{0}\frac{h}{R-r}{\int}_{S} d\rho^{\prime} d\varphi^{\prime} \frac{\sqrt{1-e^{-4\rho^{\prime^{2}}\beta^{2}}}}{\lvert r-r^{\prime} \lvert}(X \sin\varphi^{\prime}) $$
(A18)

The radial part can be expressed as

$$ \frac{1}{\lvert r-r^{\prime} \lvert}=\sum\limits_{p=-\infty}^{\infty}e^{ip(\varphi - \varphi \prime)}{\int}_{0}^{\infty}J_{p}(k\rho)J_{p}(k\rho^{\prime})e^{k(z_<-z_>)}dk $$

where Jp are the first kind Bessel functions and using

$$ {\int}_{0}^{2\pi}e^{ip\varphi \prime} \sin \varphi^{\prime} d\varphi^{\prime} =\pm\frac{\pi}{i}\delta_{p,\pm1} $$

But \(\delta \vec {M}(r^{\prime }) \) has only radial component

$$ \begin{array}{@{}rcl@{}} \nabla U(r)_{\rho}\approx-\frac{1}{2}M_{0}\frac{h}{R-r}X {{\int}_{r}^{R}} d\rho^{\prime} \sqrt{1-e^{-4\rho^{\prime^{2}}\beta^{2}}} \sin\varphi \\ {\int}_{0}^{\infty}\Big[\frac{-1}{\rho}J_{1}(k\rho)+k J_{0}(k\rho)\Big]J_{1}(k\rho^{\prime})e^{k(z_<-z_>)} dk \end{array} $$
(A19)

Substitute in Eq. A16 to calculate dipolar energy

$$ \begin{array}{@{}rcl@{}} &&\delta E_{dip}=\frac{{M_{0}^{2}}\mu_{0}X^{2}h}{4(R-r)}{\int}_{V} \rho d\rho d\varphi dz \sqrt{1-e^{-4\rho^{2}\beta^{2}}} \\&& {{\int}_{r}^{R}} d\rho^{\prime} \sqrt{1-e^{-4\rho^{\prime^{2}}\beta^{2}}} \frac{\sin^{2}\varphi}{\sqrt{\rho^{2}+X^{2}-2\rho X\cos\varphi}} \\&& {\int}_{0}^{\infty} dk \Bigg[-\frac{1}{\rho}J_{1}(k\rho)+kJ_{0}(k\rho)\Bigg]J_{1}(k\rho^{\prime}) e^{k(z_<-z_>)} \end{array} $$
(A20)

We use the following equations to solve integration for z

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{h}} e^{k(z_<-z_>)} dz&=&\frac{1}{k}\Bigg[2-e^{-kh\big(\frac{R-\rho^{\prime}}{R-r}\big)}-e^{-kh\big(\frac{\rho^{\prime}-r}{R-r}\big)}\Bigg]\\ {\int}_{0}^{h\big(\frac{R-\rho}{R-r}\big)}\! e^{k(z_<-z_>)} dz& = &\frac{1}{k}\Bigg[2 - e^{-kh\big(\frac{R-\rho^{\prime}}{R-r}\big)} - e^{-kh\big(\frac{\rho^{\prime}-\rho}{R-r}\big)}\!\Bigg] if \rho \!<\! \rho^{\prime}\\ {\int}_{0}^{h\big(\frac{R-\rho}{R-r}\big)} e^{k(z_<-z_>)} dz& = &\frac{1}{k}\Bigg[e^{-kh\big(\frac{\rho-\rho^{\prime}}{R-r}\big)} - e^{-kh\big(\frac{R-\rho^{\prime}}{R-r}\big)}\Bigg] if \rho \!>\! \rho^{\prime} \end{array} $$
(A21) (A22) (A23)

Let the total dipolar energy δEdip = δEdip1 + δEdip2 + δEdip3, where

$$ \begin{array}{@{}rcl@{}} \delta E_{dip1}&=&\frac{{M_{0}^{2}}\mu_{0}X^{2}h}{4(R-r)}{{\int}_{r}^{R}}d\rho^{\prime} \sqrt{1-e^{-4\rho^{\prime^{2}}\beta^{2}}}{{\int}_{0}^{r}}d\rho \sqrt{1-e^{-4\rho^{2}\beta^{2}}} \\ &&{\int}_{0}^{2 \pi} d\varphi \frac{\sin^{2}\varphi}{\sqrt{\rho^{2}+X^{2}-2\rho X\cos\varphi}} {\int}_{0}^{\infty}dk J_{1}(k\rho^{\prime}) \\ &&\times \Bigg[-\frac{1}{k}J_{1}(k\rho)+\rho J_{0}(k\rho)\Bigg] \Bigg[2-e^{kh\big(\frac{R-\rho^{\prime}}{R-r}\big)}-e^{kh\big(\frac{\rho^{\prime}-r}{R-r}\big)}\Bigg] \end{array} $$
(A24)
$$ \begin{array}{@{}rcl@{}} \delta E_{dip2}&=&\frac{{M_{0}^{2}}\mu_{0}X^{2}h}{4(R-r)}{{\int}_{r}^{R}}d\rho^{\prime} \sqrt{1-e^{-4\rho^{\prime^{2}}\beta^{2}}}{\int}_{r}^{\rho^{\prime}}d\rho \sqrt{1-e^{-4\rho^{2}\beta^{2}}} \\ &&{\int}_{0}^{2 \pi} d\varphi \frac{\sin^{2}\varphi}{\sqrt{\rho^{2}+X^{2}-2\rho X\cos\varphi}} \\ &&{\int}_{0}^{\infty}dk \Bigg[-\frac{1}{k}J_{1}(k\rho)+\rho J_{0}(k\rho)\Bigg]J_{1}(k\rho^{\prime})\\ &&\times \Bigg[2-e^{kh\big(\frac{R-\rho^{\prime}}{R-r}\big)}-e^{kh\big(\frac{\rho^{\prime}-\rho}{R-r}\big)}\Bigg] \end{array} $$
(A25)
$$ \begin{array}{@{}rcl@{}} \delta E_{dip3}&=&\frac{{M_{0}^{2}}\mu_{0}X^{2}h}{4(R-r)}{{\int}_{r}^{R}}d\rho^{\prime} \sqrt{1-e^{-4\rho^{\prime^{2}}\beta^{2}}}{\int}_{\rho^{\prime}}^{R}d\rho \sqrt{1-e^{-4\rho^{2}\beta^{2}}} \\ &&{\int}_{0}^{2 \pi} d\varphi \frac{\sin^{2}\varphi}{\sqrt{\rho^{2}+X^{2}-2\rho X\cos\varphi}} \\ &&{\int}_{0}^{\infty}dk \Bigg[-\frac{1}{k}J_{1}(k\rho)+\rho J_{0}(k\rho)\Bigg]J_{1}(k\rho^{\prime})\\ &&\times\Bigg[e^{kh\big(\frac{\rho-\rho^{\prime}}{R-r}\big)}-e^{kh\big(\frac{R-\rho^{\prime}}{R-r}\big)}\Bigg] \end{array} $$
(A26)

The summation of the above three equations gives the total demagnetization energy. Now, the total energy is calculated which is the algebraic sum of exchange energy and demagnetization energy that helps in finding the stiffness constant κ by utilizing W(X) = κX2. Therefore, the vortex mode frequency can be calculated by \( f=\frac {1}{2\pi }\frac {\kappa }{G} \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotti, A.P., Sahu, R., Tandon, P. et al. Tunable microwave susceptibility of thin truncated conical permalloy nanodisks : a micromagnetic investigation. J Nanopart Res 25, 41 (2023). https://doi.org/10.1007/s11051-023-05685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05685-7

Keywords

Navigation