Skip to main content
Log in

Study of laser ablated copper nanoparticles in different liquids and their effect on optical properties of Tb3+ in PVA

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Cu nanoparticles have been prepared in different liquids i.e. aqueous solution of sodium dodecyl sulfate, acetone and ethanol with the help of laser ablation from a bulk copper target using 1,064 nm from Nd:YAG laser. Transmission electron microscopy and UV–vis spectrometry have been employed for the analysis of size and optical properties of the nanoparticles, respectively. X-ray diffraction patterns confirm the formation of Cu nanoparticles. The nanoparticles exhibit hexagonal nature with average particle size of 15–25 and 20–30 nm in case of sodium dodecyl sulfate and acetone respectively, whereas they posses spherical symmetry with bigger particle size of 30–40 nm in ethanol. The surface plasmon resonance peak shifts from 587 to 613 nm in different solvents, which is partly related to the change in shape and size of the particles. Further, Cu nanoparticles in different solvents have been added to polymer with terbium (Tb3+) ions to seek into the optical properties of the samples. The photoluminescence of Tb3+ ions varies with Cu nanoparticles in different solvents in polyvinyl alcohol and the result has been further verified by lifetime analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M Moreno, R Hernandez and D Lopez Eur. Polym. J. 46 2099 (2010)

    Article  Google Scholar 

  2. E Purushotham and N G Krishna Indian J. Phys. 84 887 (2010)

    Article  ADS  Google Scholar 

  3. D P Chattopadhyay and B H Patel Int. J. Pure Appl. Sci. Technol. 9 1 (2012)

    Google Scholar 

  4. X Ren, D Chen and F Tang J. Phys. Chem. B 109 15803 (2005)

    Article  Google Scholar 

  5. H S Wu and D H Chen J. Colloid Interface Sci. 273 165 (2004)

    Article  Google Scholar 

  6. Y Gotoh et al. J. Mater. Chem. 10 2548 (2000)

    Article  Google Scholar 

  7. T N Rostovshchikov et al. Appl. Catal. A Gen 296 70 (2005)

    Article  Google Scholar 

  8. A Quaranta et al. J. Non Cryst Solids 345 671 (2004)

    Article  ADS  Google Scholar 

  9. Z L Wang, ZW Quan and P Y Jia Chem. Mat. 18 2030 (2006)

    Article  Google Scholar 

  10. W E Wallace, A Elattear, H Imamura, R S Craig and A G Moldvan The Science and Technology of Rare Earth Materials (New York: Academic Press) (eds.) W E Wallace and E C Subbarao p 329 (1980)

  11. W E Wallace Rare Earth Intermetallics (New York: Academic Press Inc) (ed.) A M Alper et al. (1973)

  12. R R Tang, G L Gu and Q Zhao Spectrochim. Acta A 71 371 (2008)

    Article  ADS  Google Scholar 

  13. G Kaur, Y Dwivedi and S B Rai Mat. Chem. Phys. 130 1351 (2011)

    Article  Google Scholar 

  14. G Kaur and S B Rai J. Appl. Phys. D 44 425 (2011)

    Article  Google Scholar 

  15. T Tsuji, KenzoIryo, Y Nishimura and M Tsuji J. Photochem. Photobiol. A Chem. 145 201 (2001)

    Article  Google Scholar 

  16. P V Kazakevich, V V Voronov, A V Simakin and G A Shafeev Quantum Electronics 34 951 (2004)

    Article  ADS  Google Scholar 

  17. J Lee, D K Kim and WK Bull Korean Chem. Soc. 27 1869 (2006)

    Google Scholar 

  18. H S Desarkar, P Kumbhakar and A K Mitra Appl. Nanosci. 2 285 (2012)

    Article  ADS  Google Scholar 

  19. V Amendola and Moreno Meneghetti Phys. Chem. Chem. Phys. 11 3805 (2009)

    Google Scholar 

  20. M R Tilaki, A Irajizad and S M Mahdavi Appl. Phys. A 88 415 (2007)

    Article  ADS  Google Scholar 

  21. B G Ganga, P N Santosh J. Alloys Compd. 612 456 (2014)

    Article  Google Scholar 

  22. P Maneeratanasarn, T V Khai, S Y Kim, B G Choi and K B Shim Phys Status Solidi A 3 563 (2013)

    Article  ADS  Google Scholar 

  23. P B Khoza, M J Moloto and L M Sikhwivhilu J. Nanotech. 2012 195106 (2011)

    Google Scholar 

  24. T M D Dang, T T T Le, E F Blanc and M C Dang Adv. Nat. Sci. Nanosci. Nanotech. 2 015009 (2011)

    Article  Google Scholar 

  25. C Noguez J. Phys. Chem. C 111 3806 (2007)

    Article  Google Scholar 

  26. R K Verma, K Kumar and S B Rai J. Colloid Interface Sci. 390 11 (2013)

    Article  Google Scholar 

  27. B Kumar, G Kaur, P Singh and S B Rai Appl. Phys. B 110 345 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Alexander von Humboldt Foundation, Germany, for providing pulsed Nd:YAG laser. Authors would like to acknowledge Prof. O N Srivastava, B. H. U. Varanasi, for TEM measurements. Authors would also like to acknowledge Prof. R. N. Rai, BHU Varanasi, for absorption measurements. One of the authors B Kumar would like to acknowledge UGC for Meritorious fellowship in Science. G Kaur would like to acknowledge DST for the project grant in the form of WOS-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Kaur, G. & Rai, S.B. Study of laser ablated copper nanoparticles in different liquids and their effect on optical properties of Tb3+ in PVA. Indian J Phys 89, 629–634 (2015). https://doi.org/10.1007/s12648-014-0617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0617-0

Keywords

PACS Nos.

Navigation