Skip to main content
Log in

Electric field assisted-laser ablation of cu nanoparticles in ethanol and investigation of their properties

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, Cu nanoparticles were synthesized for the first time using an electric field-assisted pulsed laser ablation in liquid media (EPLAL) process and the influence of electric field on the properties of the synthesized nanoparticles was investigated. As-synthesized nanoparticles were successfully characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron dispersive X-ray analysis (EDX), fourier transform-infrared (FT-IR), Raman spectra, Dynamic light scattering analysis (DLS) and ultraviolet–visible (UV–Vis) spectroscopy. The XRD analysis demonstrated face centered cubic (FCC) structure of pure Cu nanoparticles. The FE-SEM and TEM analyses revealed that increasing the strength of electric field leads to fabricating nanoparticles with narrower range of size distribution. Also, the copper nanoparticles formation were confirmed by the characteristic surface plasmon resonance (SPR) peak in UV–Vis spectra. On the other hand, the UV–Vis spectra displayed the blue-shifts from 588 to 582 nm of SPR peak by increasing the strength of applied electric field, which indicated the size of Cu nanoparticles were reduced. Furthermore, the DLS analysis confirmed that the size of Cu nanoparticles reduced from 115.8 to 91.7 nm by increasing the strength of applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Haddad, R., Hamid, M., Jumaa, T.: Electric field effect on the synthesis of nanogold particles by PLAL. Int. J. Chem. Nat. Sci. 3, 269–274 (2015)

    Google Scholar 

  • Bahador, A., Otaqsara, S.T., Baizaee, S.: A fast, room temperature excimer laser route for the synthesis of Ag/MWCNT nanocomposite without using reducing agent and investigating its photoresponse behavior to visible illumination. Appl. Surf. Sci. 457, 1087–1095 (2018)

    Article  ADS  Google Scholar 

  • Barcikowski, S., Compagnini, G.: Advanced nanoparticle generation and excitation by lasers in liquids. PCCP 15(9), 3022–3026 (2013)

    Article  ADS  Google Scholar 

  • Baruah, P.K., Singh, A., Rangan, L., Sharma, A.K., Khare, A.: Optimization of copper nanoparticles synthesized by pulsed laser ablation in distilled water as a viable SERS substrate for karanjin. Mater. Chem. Phys. 220, 111–117 (2018)

    Article  Google Scholar 

  • DellʼAglio, M., Gaudiuso, R., De Pascale, O., De Giacomo, A.: Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl. Surf. Sci. 348, 4–9 (2015)

    Article  Google Scholar 

  • Desarkar, H., Kumbhakar, P., Mitra, A.: Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique. Appl. Nanosci 2(3), 285–291 (2012)

    Article  ADS  Google Scholar 

  • Fernández-Arias, M., Boutinguiza, M., Del Val, J., Covarrubias, C., Bastias, F., Gómez, L., Maureira, M., Arias-González, F., Riveiro, A., Pou, J.: Copper nanoparticles obtained by laser ablation in liquids as bactericidal agent for dental applications. Appl. Surf. Sci. 507, 145032 (2020). https://doi.org/10.1016/j.apsusc.2019.145032

    Article  Google Scholar 

  • Gahlawat, G., Choudhury, A.R.: A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 9(23), 12944–12967 (2019)

    Article  ADS  Google Scholar 

  • Herbani, Y., Nasution, R., Mujtahid, F., Masse S Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production. In: Journal of Physics: Conference Series, vol 1. IOP Publishing, pp. 012005 (2018). https://doi.org/10.1088/1742-6596/985/1/012005

  • Ismail, R.A., Fadhil, F.A.: Effect of electric field on the properties of bismuth oxide nanoparticles prepared by laser ablation in water. J. Mater. Sci. Mater. Electron. 25(3), 1435–1440 (2014)

    Article  Google Scholar 

  • Jillani, S., Jelani, M., Hassan, N.U., Ahmad, S., Hafeez, M.: Synthesis, characterization and biological studies of copper oxide nanostructures. Mater. Res. Express 5(4), 045006 (2018). https://doi.org/10.1088/2053-1591/aab864

    Article  ADS  Google Scholar 

  • Jiménez, J.A.: Thermal effects on the surface plasmon resonance of Cu nanoparticles in phosphate glass: impact on Cu+ luminescence. Nanoscale Adv. 1(5), 1826–1832 (2019)

    Article  ADS  Google Scholar 

  • Khalil, A.: Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field. Opt. Laser Technol. 75, 105–114 (2015)

    Article  ADS  Google Scholar 

  • Kreibig, U., Vollmer, M.: Optical properties of metal clusters, vol. 25. Springer Science & Business Media (2013)

    Google Scholar 

  • Kumar, B., Thareja, R.K.: Laser ablated copper plasmas in liquid and gas ambient. J. Plasma Phys. 20(5), 053503 (2013). https://doi.org/10.1063/1.4807041

    Article  Google Scholar 

  • Li, Y., Musaev, O., Wrobel, J., Kruger, M.: Laser ablation in liquids of germanium in externally applied electric fields. J. Laser Appl. 28(2), 022004 (2016). https://doi.org/10.2351/1.4940793

    Article  ADS  Google Scholar 

  • Lin, X., Liu, P., Yu, J., Yang, G.: Synthesis of CuO nanocrystals and sequential assembly of nanostructures with shape-dependent optical absorption upon laser ablation in liquid. J. Phys. Chem. C 113(40), 17543–17547 (2009)

    Article  Google Scholar 

  • Liu, P., Wang, C., Chen, X., Yang, G.: Controllable fabrication and cathodoluminescence performance of high-index facets GeO2 micro-and nanocubes and spindles upon electrical-field-assisted laser ablation in liquid. J. Phys. Chem. C 112(35), 13450–13456 (2008)

    Article  Google Scholar 

  • Liu, P., Wang, H., Li, X., Rui, M., Zeng, H.: Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media. RSC Adv. 5(97), 79738–79745 (2015)

    Article  ADS  Google Scholar 

  • Mahdieh, M.H., Mozaffari, H.: Characteristics of colloidal aluminum nanoparticles prepared by nanosecond pulsed laser ablation in deionized water in presence of parallel external electric field. Phys. Lett. A 381(38), 3314–3323 (2017). https://doi.org/10.1016/j.optlastec.2020.106083

    Article  ADS  Google Scholar 

  • Marzun, G., Bönnemann, H., Lehmann, C., Spliethoff, B., Weidenthaler, C., Barcikowski, S.: Role of dissolved and molecular oxygen on Cu and PtCu alloy particle structure during laser ablation synthesis in liquids. Chem. Phys. Chem. 18(9), 1175–1184 (2017)

    Article  Google Scholar 

  • Moniri, S., Hantehzadeh, M.R., Ghoranneviss, M., Asadabad, M.A.: Study of the optical and structural properties of Pt nanoparticles prepared by laser ablation as a function of the applied electric field. Appl. Phys. A 123(11), 1–11 (2017a)

    Article  Google Scholar 

  • Moniri, S., Ghoranneviss, M., Hantehzadeh, M.R., Asadabad, M.A.: Synthesis and optical characterization of copper nanoparticles prepared by laser ablation. Bull. Mater. Sci. 40(1), 37–43 (2017b)

    Article  Google Scholar 

  • Mozaffari, H., Mahdieh, M.H.: Synthesis of colloidal aluminum nanoparticles by nanosecond pulsed laser and the effect of external electric field and laser fluence on ablation rate. Opt. Laser Technol. 126, 106083 (2020). https://doi.org/10.1016/j.optlastec.2020.106083

    Article  Google Scholar 

  • Muniz-Miranda, M., Gellini, C., Giorgetti, E.: Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J. Phys. Chem. C 115(12), 5021–5027 (2011). https://doi.org/10.1021/jp1086027

    Article  Google Scholar 

  • Oguchi, H., Sakka, T., Ogata, Y.H.: Effects of pulse duration upon the plume formation by the laser ablation of Cu in water. J. Appl. Phys. 102(2), 023306 (2007). https://doi.org/10.1063/1.2759182

    Article  ADS  Google Scholar 

  • Peng-Fei, Y., Rong, Z., Qian, L., Jian-Chang, H., Yin-Bing, L., Ning, L.: Preparation of micropowder by a combination of jet-milling and electrostatic dispersion. Chin. Phys. Lett. 30(9), 098104 (2013). https://doi.org/10.1088/0256-307X/30/9/098104

    Article  ADS  Google Scholar 

  • Sapkota, D., Li, Y., Musaev, O.R., Wrobel, J.M., Kruger, M.B.: Effect of electric fields on tin nanoparticles prepared by laser ablation in water. J. Laser Appl. 29(1), 012002 (2017). https://doi.org/10.2351/1.4963270

    Article  ADS  Google Scholar 

  • Serkov, A., Barmina, E., Shafeev, G., Voronov, V.: Laser ablation of titanium in liquid in external electric field. Appl. Surf. Sci. 348, 16–21 (2015)

    Article  Google Scholar 

  • Shahzadi, I., Suleman, S., Saleem, S., Nadeem, S.: Utilization of Cu-nanoparticles as medication agent to reduce atherosclerotic lesions of a bifurcated artery having compliant walls. Comput. Meth. Prog. Bio. 184, 105123 (2020). https://doi.org/10.1016/j.cmpb.2019.105123

    Article  Google Scholar 

  • Suresh, A.K.: Metallic nanocrystallites and their interaction with microbial systems. Springer Science & Business Media (2012)

    Book  Google Scholar 

  • Suresh, S., Karthikeyan, S., Jayamoorthy, K.: FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J. Sci.-Adv. Mater. Dev. 1(3), 343–350 (2016)

    Google Scholar 

  • Sylvestre, J.-P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J.H.: Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B 108(43), 16864–16869 (2004)

    Article  Google Scholar 

  • Tan, M.I.S.M.H., Omar, A.F., Rashid, M., Hashim, U.: VIS-NIR spectral and particles distribution of Au, Ag, Cu, Al and Ni nanoparticles synthesized in distilled water using laser ablation. Results Phys. 14, 102497 (2019). https://doi.org/10.1016/j.rinp.2019.102497

    Article  Google Scholar 

  • Tilaki, R., Mahdavi, S.: Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Appl. Phys. A 88(2), 415–419 (2007)

    Article  ADS  Google Scholar 

  • Uchinokura, K., Sekine, T., Matsuura, E.: Raman scattering by silicon. Solid State Commun. 11(1), 47–49 (1972)

    Article  ADS  Google Scholar 

  • Yan, Z., Chrisey, D.B.: Pulsed laser ablation in liquid for micro-/nanostructure generation. J. Photochem. Photobiol. C: Photochem. Rev. 13(3), 204–223 (2012)

    Article  Google Scholar 

  • Yang, G.: Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog. Mater. Sci. 52(4), 648–698 (2007)

    Article  Google Scholar 

  • Yeshchenko, O.A., Dmitruk, I.M., Dmytruk, A.M., Alexeenko, A.A.: Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater. Sci. Eng. B 137(1–3), 247–254 (2007)

    Article  Google Scholar 

  • Zeng, H., Du, X.W., Singh, S.C., Kulinich, S.A., Yang, S., He, J., Cai, W.: Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22(7), 1333–1353 (2012)

    Article  Google Scholar 

  • Zhao, H., Liu, X., Stephen, D.T.: Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis. J. Nanoparticle Res. 10(6), 907–923 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Hantehzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razaghianpour, M., Hantehzadeh, M.R., Sari, A.H. et al. Electric field assisted-laser ablation of cu nanoparticles in ethanol and investigation of their properties. Opt Quant Electron 54, 23 (2022). https://doi.org/10.1007/s11082-021-03286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03286-z

Keywords

Navigation