Skip to main content
Log in

Study of C2–C5 Non-methane Hydrocarbons and Their Ozone Formation Potential at Bhubaneswar, an Eastern Coastal Site in India

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

A preliminary study has been taken up to evaluate the NHHCs concentration and their effect on atmospheric chemistry at Bhubaneswar for the very first time during winter months when pollution load is prevalent. For this purpose ambient air samples were collected during a period of 3 months (Dec 2013–Feb 2014). The samples were analyzed for C2–C5 light non-methane hydrocarbons (NMHCs) using a gas chromatograph with a thermal desorption system. It was observed that level of NMHCs over the measurement site was lower in comparison to other urban locations within India but higher in comparison to Bay of Bengal. Statistical interpretation suggests a non-significant variation of NMHCs concentration between the observation months. Diurnal observations revealed a higher concentration of both n-pentane and i-pentane which was mostly attributed to solvent evaporation. Liquefied petroleum gas usage is believed to be a major contributor to the mixing ratios of propane (1.5 ppbv) and butane (0.027 ppbv) while ethane and ethylene emissions were attributed to traffic volume and vehicular exhausts. The propylene-equivalent and ozone formation potential of NMHCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation. Relative humidity was also observed to have a significant correlation with NMHCs concentration. Variation of total non-methane hydrocarbons (TNMHCs) with ozone and CO suggest the role of TNMHC as precursor for ozone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.R. Gurjar, J.A. van Aardenne, J. Lelieveld and M. Mohan, Emission estimates and trends (1990–2000) for megacity Delhi and implications, Atmos. Environ., 38 (2004) 5663–5681.

    Article  ADS  Google Scholar 

  2. R. Sindhwani and P. Goyal, Assessment of traffic–generated gaseous and particulate matter emissions and trends over Delhi (2000–2010), Atmos. Pollut. Res., 5 (2014) 438–446.

    Article  Google Scholar 

  3. D. Vione, V. Maurino, C. Minero, E.Pelizzetti, M.A.J. Harrison, R.I. Olariu and C. Arsene, Photochemical reactions in the tropospheric aqueous phase and on particulate matter, Chem. Soc. Rev., 35 (2006) 441–453. doi:10.1039/b510796m.

    Google Scholar 

  4. T.P. Singh, Study of volatile organic compounds (VOCs), trace gases (ozone and NOx) and black carbon at Dayalbagh: a semi-urban site. Ph.D. Thesis Dayalbagh educational institute (Deemed university) (2012).

  5. R. Atkinson, Atmospheric chemistry of VOCs and NO x , Atmos. Environ., 34 (2000) 2063–2101.

    Article  ADS  Google Scholar 

  6. C. Varotsos, J. Christodoulakis, C. Tzanis and A.P. Cracknell, Signature of tropospheric ozone and nitrogen dioxide from space: a case study for Athens, Greece., Atmos. Environ., 89 (2014) 721–730.

    Article  ADS  Google Scholar 

  7. C. Tzanis, C. Varotsos, J. Christodoulakis, J. Tidblad, M. Ferm, A. Ionescu, R.A. Lefevre, K. Theodorakopoulou and K. Kreislova, On the corrosion and soiling effects on materials by air pollution in Athens, Greece, Atmos. Chem. Phys., 11 (2011) 12039–12048.

    Article  ADS  Google Scholar 

  8. C. Varotsos, M. Efstathiou, C. Tzanis and D. Deligiorgi, On the limits of the air pollution predictability: the case of the surface ozone at Athens, Greece, Environ. Sci. Pollut. Res., 19 (2012) 295–300.

    Article  Google Scholar 

  9. K. Saarnio, M. Sillanpaa, R. Hillamo, E. Sandell, A.S. Pennanen and R.O. Salonen, Polycyclic aromatic hydrocarbons in size-segregated particulate matter from six urban sites in Europe, Atmos. Environ., 42 (2008) 9087–9097.

    Article  ADS  Google Scholar 

  10. C. Varotsos, J. Ondov, C. Tzanis, F. Ozturk, M. Nelson, H. Ke and J. Christodoulakis, An observational study of the atmospheric ultra-fine particle dynamics, Atmos. Environ., 59 (2012) 312–319.

    Article  ADS  Google Scholar 

  11. A. Rao et al., Non-methane hydrocarbons in industrial locations of Bombay, Atmos. Environ., 31(1997) 1077–1085.

    Article  ADS  Google Scholar 

  12. L.K. Sahu and S. Lal, Distributions of C2–C5 NMHCs and related trace gases at a tropical urban site in India, Atmos. Environ., 40 (2006) 880–891.

    Article  ADS  Google Scholar 

  13. L.K. Sahu and S. Lal, Characterization of C2–C4 NMHCs distributions at a high altitude tropical site in India, J. Atmos. Chem., 54 (2006) 161–175.

    Article  Google Scholar 

  14. S. Lal, L.K. Sahu, S. Venkataramani, T.A. Rajesh and K.S. Modh, Distributions of OZONE, CO and NMHCs over the rural sitesin central India, J. Atmos. Chem., 61 (2008) 73–84.

    Article  Google Scholar 

  15. M. Naja, S. Lal and D. Chand, Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6°N, 72.7°E, 1680 m asl) in India, Atmos. Environ., 37 (2003) 4205–4215.

    Article  ADS  Google Scholar 

  16. Y.V. Swamy, R. Venkanna, G.N. Nikhi, D.N.S.K. Chitanya, P.R. Sinha, M. Ramakrishna and A.G. Rao, Impact of nitrogen oxides, volatile organic compounds and black carbon on atmospheric ozone levels at a semi arid urban site in Hyderabad, Aerosol Air Qual. Res. 12 (2012) 662–671.

    Google Scholar 

  17. C. Mallik, S. Lal, S. Venkataramani, M. Naja and N. Ojha, Variability in ozone and its precursors over the Bay of Bengal during post monsoon: transport and emission effects, J. Geophys. Res., 118 (2013) 10–190.

    Google Scholar 

  18. C.Mallik, D.Ghosh, D.Ghosh, U. Sarkar, S. Lal and S. Venkataramani, Variability of SO2, CO, and light hydrocarbons over a megacity in eastern India: effects of emissions and transport, Environ. Sci. Pollut. Res., 21 (2014) 8692–8706. doi:10.1007/s11356-014-2795-x.

    Article  Google Scholar 

  19. B. Barletta, S.Meinardi, F.S. Rowland, C.Y. Chan, X.C. Wang, L.Y. Chan and D.R. Blake, Volatile organic compounds in 43 Chinese cities, Atmos. Environ., 39 (2005) 5979–5990.

    Article  ADS  Google Scholar 

  20. R. Koppmann, F.J. Johnen, A. Khedim, J. Rudolph, A. Wedel and B. Wiards, The influence of ozone on light nonmethane hydrocarbons during cryogenic preconcentration, J. Geophys. Res., 100 (1995) 11383–11391.

    Article  ADS  Google Scholar 

  21. N. Poisson, M. Kanakidou and P.J. Crutzen, Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results, J. Atmos. Chem., 36 (2000) 157–230.

    Article  Google Scholar 

  22. T. Berntsen, I.S.A. Isaksen, W.C. Wang and X.Z. Liang, Impacts of increased anthropogenic emissions in Asia ontropospheric ozone and climate. A global 3D model study, Tellus, 48B (1996) 13–32.

    Article  ADS  Google Scholar 

  23. P.J. Crutzen, Ozone in the troposphere, in: Singh, H.B. (Ed.), Composition, chemistry, and climate of the atmosphere, Van Nostrand Reinhold, New York (1995) pp. 349–393.

    Google Scholar 

  24. P.S. Mahapatra, S. Panda, N. Das, S. Rath and T. Das, Variation in black carbon mass concentration over an urban site in the eastern coastal plains of the Indian sub-continent, Theor. Appl. Climatol., 117 (2013) 133–147. doi:10.1007/s00704-013-0984-z.

    Article  ADS  Google Scholar 

  25. P.S. Mahapatra, S. Panda, P.P. Walvekar, R. Kumar, T. Das and B.R. Gurjar, Seasonal trends, meteorological impacts, and associated health risks with atmospheric concentrations of gaseous pollutants at an Indian coastal city, Environ. Sci. Pollut. Res., 21 (2014), 11418–11432.

    Article  Google Scholar 

  26. S. Verma, S.K. Pani and S.N. Bhanja, Sources and radiative effects of wintertime black carbon aerosols in an urban atmosphere in east India, Chemosphere, 90 (2013) 260–269.

    Article  Google Scholar 

  27. S. Lal, L.K. Sahu, S. Venkataramani and C. Mallik, Light non-methane hydrocarbons at two sites in the Indo-Gangetic Plain, J. Environ. Monit., 14 (2012) 1159.

    Article  Google Scholar 

  28. S.P. Gupta Statistical method. Sultan Chand and Sons, New Delhi (2005).

    Google Scholar 

  29. A.N. Johnson, C.J. Crowley and T.T. Yeh, Uncertainty analysis of NIST’s 20 liter hydrocarbon liquid flow standard, MAPAN-J. Metrol. Soc India, 26 (2011) 187–202.

    Google Scholar 

  30. C.H. Li and A. Johnson, Bilateral comparison between NIM’s and NIST’s gas flow standards, MAPAN-J. Metrol. Soc India, 26 (2011) 211–224.

    Google Scholar 

  31. M. Carter, W. Johansen and C. Britton, Performance of a gas flow meter calibration system utilizing critical flow venturi standards, MAPAN-J. Metrol. Soc India, 26 (2011) 247–254.

    Google Scholar 

  32. T. Salameh, C. Afif, S. Sauvage, A. Borbon and N. Locoge, Speciation of non-methane hydrocarbons from anthropogenic sources in Beirut, Lebanon, Environ. Sci. Pollut. Res., 21 (2014) 10867–10877. doi:10.1007/s11356-014-2978-5.

    Article  Google Scholar 

  33. J.H. Tang, L.Y. Chan, C.Y. Chan, Y.S. Li, C.C. Chang, S.C. Liu, D. Wu and Y.D. Li, Characteristics and diurnal variations of NMHCs at urban, suburban and rural sites in Pearl River Delta and a remote site in south China, Atmos. Environ., 41 (2007) 8620–8632.

    Article  ADS  Google Scholar 

  34. D.R. Blake and F.S. Rowland, Urban leakage of liquefied petroleum gas and its impact on Mexico City, Air Qual. Sci., 269 (1995) 953–956.

    Google Scholar 

  35. S. Saito, I. Nagao and H. Kanzawa, Characteristics of ambient C2–C11 non-methane hydrocarbons in metropolitian Nagoya, Japan, Atmos. Environ., 43 (2009) 4384–4395.

    Article  ADS  Google Scholar 

  36. J.H. Tang, S.J. Guo, Y.L. Ma, F.M. Yang, K.B. He, Y.C. Yu, J.W. Wang, Z.B. Shi and G.C. Chen, Non-methane hydrocarbons and their ozone formation potentials in Foshan, China, Aerosol Air Qual. Res., 12 (2012) 387–398.

    Google Scholar 

  37. R. Friedrich and A. Obermeir, Anthropogenic emissions of volatile organic compounds, in: Hewitt, C.N. (Ed.), Reactive hydrocarbons in the atmosphere. Academic Press, San Diego (1999) pp. 1–39.

    Chapter  Google Scholar 

  38. W.L. Chameides, F. Fehsenfeld, M.O. Rodgers, C. Cardelino, J. Martinez, D. Parrish, W. Lonneman, D.R. Lawson, R.A. Rasmussen, P. Zimmerman, J. Greenberg, P. Middleton and T. Wang, Ozone precursor relationships in the ambient atmosphere, J. Geophys. Res., 97 (1992) 6037–6055.

    Article  ADS  Google Scholar 

  39. W.P.L. Carter, Development of ozone reactivity scales for volatile organic compounds, J. Air Waste Manag. Assoc., 44 (1994) 881–899.

    Article  Google Scholar 

  40. W.P.L. Carter, Maximum incremental reactivity excel spreadsheet (1997). http://pah.cert.ucr.edu/carter/rcttab.htm.

  41. B. Güttler and W. Richter, Metrology in chemistry in Germany, MAPAN-J. Metrol. Soc India, 25 (2010) 219–225.

    Google Scholar 

  42. K.L. Johnson, L.H. Dworetsky and A. N. Heller, Carbon monoxide and air pollution from automobile emissions in New York City, Science, 160 (1968) 6768.

    Google Scholar 

  43. J. Lelieveld, V. Peters, F.J. Dentener and M. Krol, Stability of tropospheric hydroxyl chemistry, J. Geophys. Res., 107 (2002) 4715.

    Article  Google Scholar 

  44. U.K. Sharma, Y. Kajji and H. Akimoto, Seasonal variation of C2–C5 NMHCs at Happo, a remort site in Japan, Atmos. Environ., 34 (2000) 4447–4458.

    Article  ADS  Google Scholar 

  45. L. Li and X. Wang, Seasonal and diurnal variations of atmospheric non-methane hydrocarbons in Guangzhou, China, Int. J. Environ. Res. Public Health, 9 (2012) 1859–1873.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director, Institute of Minerals and Materials Technology (CSIR-IMMT) and the Head, Environment and Sustainability Department (CSIR-IMMT) for their encouragement. Financial support by ISRO (GBP)-ATCTM is gratefully acknowledged. The authors are also grateful to the editor of this journal as well as to both the anonymous reviewers for their valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trupti Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, U., Mahapatra, P.S. & Das, T. Study of C2–C5 Non-methane Hydrocarbons and Their Ozone Formation Potential at Bhubaneswar, an Eastern Coastal Site in India. MAPAN 30, 195–202 (2015). https://doi.org/10.1007/s12647-015-0134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-015-0134-4

Keywords

Navigation