Skip to main content
Log in

The Impact of the Antipsychotic Medication Chlorpromazine on Cytotoxicity through Ca2+ Signaling Pathway in Glial Cell Models

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Chlorpromazine, an antipsychotic medication, is conventionally applied to cope with the psychotic disorder such as schizophrenia. In cellular studies, chlorpromazine exerts many different actions through calcium ion (Ca2+) signaling, but the underlying pathways are elusive. This study explored the effect of chlorpromazine on viability, Ca2+ signaling pathway and their relationship in glial cell models (GBM 8401 human glioblastoma cell line and Gibco® Human Astrocyte (GHA)). First, chlorpromazine between 10 and 40 μM induced cytotoxicity in GBM 8401 cells but not in GHA cells. Second, in terms of Ca2+ homeostasis, chlorpromazine (10–30 μM) increased intracellular Ca2+ concentrations ([Ca2+]i) rises in GBM 8401 cells but not in GHA cells. Ca2+ removal reduced the signal by approximately 55%. Furthermore, chelation of cytosolic Ca2+ with BAPTA-AM reduced chlorpromazine (10–40 μM)-induced cytotoxicity in GBM 8401 cells. Third, in Ca2+-containing medium of GBM 8401 cells, chlorpromazine-induced Ca2+ entry was inhibited by the modulators of store-operated Ca2+ channel (2-APB and SKF96365). Lastly, in Ca2+-free medium of GBM 8401 cells, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin completely inhibited chlorpromazine-increased [Ca2+]i rises. Conversely, treatment with chlorpromazine abolished thapsigargin-increased [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished chlorpromazine-increased [Ca2+]i rises. Together, in GBM 8401 cells but not in GHA cells, chlorpromazine increased [Ca2+]i rises by Ca2+ influx via store-operated Ca2+ entry and PLC-dependent Ca2+ release from the endoplasmic reticulum. Moreover, the Ca2+ chelator BAPTA-AM inhibited cytotoxicity in chlorpromazine-treated GBM 8401 cells. Therefore, Ca2+ signaling was involved in chlorpromazine-induced cytotoxicity in GBM 8401 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability Statement (Availability of Data and Materials)

The datasets used and/or analyzed during the current study are available from the corresponding author (E-mail address: lianggoole67@gmail.com) on reasonable request.

References

  • Abbruzzese C, Matteoni S, Persico M, Villani V, Paggi MG (2020) Repurposing chlorpromazine in the treatment of glioblastoma multiforme: analysis of literature and forthcoming steps. J Exp Clin Cancer Res 39:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antoszczak M, Markowska A, Markowska J, Huczyński A (2021) Antidepressants and antipsychotic agents as repurposable oncological drug candidates. Curr Med Chem 28:2137–2174

    Article  CAS  PubMed  Google Scholar 

  • Barygin OI, Nagaeva EI, Tikhonov DB, Belinskaya DA, Vanchakova NP, Shestakova NN (2017) Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics. Brain Res 1660:58–66

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (2013) Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 7:2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein MP, Golovina VA (2001) Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores. Trends Neurosci 24:602–608

    Article  CAS  PubMed  Google Scholar 

  • Candy B, Jackson KC, Jones L, Leurent B, Tookman A, King M (2012) Drug therapy for delirium in terminally ill adult patients. Cochrane Database Syst Rev 11:CD004770

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947

  • Chantong B, Kratschmar DV, Lister A, Odermatt A (2014) Inhibition of metabotropic glutamate receptor 5 induces cellular stress through pertussis toxin-sensitive Gi-proteins in murine BV-2 microglia cells. J Neuroinflammation 11:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen KH, Chang BH, Younan P, Shlykov SG, Sanborn BM, Chan L (2002) Increased intracellular calcium transients by calmodulin antagonists differentially modulate tumor necrosis factor-alpha-induced E-selectin and ICAM-1 expression. Atherosclerosis 165:5–13

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Kim YH, Lee YK, Kim KT (2001) Chlorpromazine inhibits store-operated calcium entry and subsequent noradrenaline secretion in PC12 cells. Br J Pharmacol 132:411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Della Corte L, Valoti M, Palmi M, Giovannini MG, Sgaragli GP (1993) Pharmacokinetics of chlorimipramine, chlorpromazine and their N-dealkylated metabolites in plasma of healthy volunteers after a single oral dose of the parent compounds. J Pharm Pharmacol 45:825–829

    Article  CAS  PubMed  Google Scholar 

  • Domijan AM, Kovac S, Abramov AY (2014) Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca2+ signal. J Cell Sci 127:21–26

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Nakazawa K, Koizumi S, Liu M, Takeuchi K, Hashimoto T, Ohno Y, Inoue K (1996) Inhibition by antipsychotic drugs of L-type Ca2+ channel current in PC12 cells. Eur J Pharmacol 314:143–150

    Article  CAS  PubMed  Google Scholar 

  • Jacob PF, Vaz SH, Ribeiro JA, Sebastião AM (2014) P2Y1 receptor inhibits GABA transport through a calcium signalling-dependent mechanism in rat cortical astrocytes. Glia 62:1211–1226

    Article  PubMed  Google Scholar 

  • Jolliet P, Nion S, Allain-Veyrac G, Tilloy-Fenart L, Vanuxeem D, Berezowski V, Cecchelli R (2007) Evidence of lowest brain penetration of an antiemetic drug, metopimazine, compared to domperidone, metoclopramide and chlorpromazine, using an in vitro model of the blood-brain barrier. Pharmacol Res 56:11–17

    Article  CAS  PubMed  Google Scholar 

  • Kanda Y, Okada M, Ikarashi R, Morioka E, Kondo T, Ikeda M (2016) Bimodal modulation of store-operated Ca(2+) channels by clozapine in astrocytes. Neurosci Lett 635:56–60

    Article  CAS  PubMed  Google Scholar 

  • Khan SZ, Dyer JL, Michelangeli F (2001) Inhibition of the type 1 inositol 1,4,5-trisphosphate-sensitive Ca2+ channel by calmodulin antagonists. Cell Signal 13:57–63

    Article  CAS  PubMed  Google Scholar 

  • Khan SZ, Longland CL, Michelangeli F (2000) The effects of phenothiazines and other calmodulin antagonists on the sarcoplasmic and endoplasmic reticulum Ca2+ pumps. Biochem Pharmacol 60:1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Kockskämper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD (2008) Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 45:128–147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacs GG, Zsembery A, Anderson SJ, Komlosi P, Gillespie GY, Bell PD, Benos DJ, Fuller CM (2005) Changes in intracellular Ca2+ and pH in response to thapsigargin in human glioblastoma cells and normal astrocytes. Am J Physiol Cell Physiol 289:C361–C371

    Article  CAS  PubMed  Google Scholar 

  • Krutetskaya ZI, Milenina LS, Naumova AA, Butov SN, Antonov VG, Nozdrachev AD (2017) The effect of chlorpromazine on intracellular Ca2+ concentration in macrophages. Dokl Biochem Biophys 474:162–164

    Article  CAS  PubMed  Google Scholar 

  • Lee MS, Johansen L, Zhang Y, Wilson A, Keegan M, Avery W, Elliott P, Borisy AA, Keith CT (2007) The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action. Cancer Res 67:11359–11367

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS, Moore PK, Wong PT, Bian JS (2006) Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54:116–124

    Article  PubMed  Google Scholar 

  • Li F, Geng X, Yip J, Ding Y (2019) Therapeutic target and cell-signal communication of chlorpromazine and promethazine in attenuating blood-brain barrier disruption after ischemic stroke. Cell Transplant 28:145–156

    Article  PubMed  Google Scholar 

  • Li HJ, Zhang YJ, Zhou L, Han F, Wang MY, Xue MQ, Qi Z (2014) Chlorpromazine confers neuroprotection against brain ischemia by activating BKCa channel. Eur J Pharmacol 735:38–43

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Semyanov A, Genazzani A, Verkhratsky A (2021) Calcium signaling in neuroglia. Int Rev Cell Mol Biol 362:1–53

    Article  CAS  PubMed  Google Scholar 

  • Makitani K, Nakagawa S, Izumi Y, Akaike A, Kume T (2017) Inhibitory effect of donepezil on bradykinin-induced increase in the intracellular calcium concentration in cultured cortical astrocytes. J Pharmacol Sci 134:37–44

    Article  CAS  PubMed  Google Scholar 

  • Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, Mampre D, Jackson C, Peterson J, Trifiletti D, Hammack J, Ortiz K, Lesser E, Spiegel M, Prevatt C, Hawayek M, Quinones-Hinojosa A, Chaichana KL (2020) Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol 147:297–307

    Article  PubMed  Google Scholar 

  • Matteoni S, Matarrese P, Ascione B, Buccarelli M, Ricci-Vitiani L, Pallini R, Villani V, Pace A, Paggi MG, Abbruzzese C (2021) Anticancer properties of the antipsychotic drug chlorpromazine and its synergism with temozolomide in restraining human glioblastoma proliferation in vitro. Front Oncol 11:635472

  • Miller CR, Perry A (2007) Glioblastoma. Arch Pathol Lab Med 131:397–406

    Article  PubMed  Google Scholar 

  • Newton-Howes Wood R (2013) Cognitive behavioural therapy and the psychopathology of schizophrenia: Systematic review and meta-analysis. Psychol Psychother 86:127–138

    Article  PubMed  Google Scholar 

  • Nikvarz N, Vahedian M, Khalili N (2017) Chlorpromazine versus penfluridol for schizophrenia. Cochrane Database Syst Rev 9:CD011831

  • Ogata N, Yoshii M, Narahashi T (1990) Differential block of sodium and calcium channels by chlorpromazine in mouse neuroblastoma cells. J Physiol 420:165–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plenge-Tellechea F, Domínguez-Solís CA, Díaz-Sánchez ÁG, Meléndez-Martínez D, Vargas-Medrano J, Sierra-Fonseca JA (2018) Chlorpromazine and dimethyl sulfoxide modulate the catalytic activity of the plasma membrane Ca2+-ATPase from human erythrocyte. J Bioenerg Biomembr 50:59–69

    Article  CAS  PubMed  Google Scholar 

  • Rundle-Thiele D, Head R, Cosgrove L, Martin JH (2016) Repurposing some older drugs that cross the blood-brain barrier and have potential anticancer activity to provide new treatment options for glioblastoma. Br J Clin Pharmacol 81:199–209

    Article  PubMed  Google Scholar 

  • Reetz G, Wiesinger H, Reiser G (1997) ATP-induced oscillations of cytosolic Ca2+ activity in cultured astrocytes from rat brain are modulated by medium osmolarity indicating a control of [Ca2+]i oscillations by cell volume. Neurochem Res 22:621–628

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SY, Kim CG, Kim SH, Kim YS, Lim Y, Lee YH (2010) Chlorpromazine activates p21Waf1/Cip1 gene transcription via early growth response-1 (Egr-1) in C6 glioma cells. Exp Mol Med 42:395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SY, Lee KS, Choi YK, Lim HJ, Lee HG, Lim Y, Lee YH (2013) The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis 34:2080–2089

    Article  CAS  PubMed  Google Scholar 

  • Singaravelu K, Lohr C, Deitmer JW (2006) Regulation of store-operated calcium entry by calcium-independent phospholipase A2 in rat cerebellar astrocytes. J Neurosci 26:9579–9592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer WD, Brown HA, Sternweis PC (1997) Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem 66:475–509

    Article  CAS  PubMed  Google Scholar 

  • Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  CAS  PubMed  Google Scholar 

  • Turcato F, Almeida C, Mota C, Kusuda R, Carvalho A, Nascimento GC, Zanon S, Leite-Panissi CR, Lucas G (2019) Dynamic expression of glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 in the mouse spinal cord dorsal horn under pathological pain states. Neurol Res 41:633–643

    Article  CAS  PubMed  Google Scholar 

  • Vinade L, Goncalves CA, Wofchuk S, Gottfried C, Rodnight R (1997) Evidence for a role for calcium ions in the dephosphorylation of glial fibrillary acidic protein (GFAP) in immature hippocampal slices and in astrocyte cultures from the rat. Brain Res Dev Brain Res 104:11–17

    Article  CAS  PubMed  Google Scholar 

  • Weissenrieder JS, Neighbors JD, Mailman RB, Hohl RJ (2019) Cancer and the dopamine D2 receptor: a pharmacological perspective. J Pharmacol Exp Ther 370:111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissenrieder JS, Reed JL, Moldovan GL, Johnson MT, Trebak M, Neighbors JD, Mailman RB, Hohl RJ (2021) Antipsychotic drugs elicit cytotoxicity in glioblastoma multiforme in a calcium-dependent, non-D2 receptor-dependent, manner. Pharmacol Res Perspect 9:e00689

  • Yang YR, Follo MY, Cocco L, Suh PG (2013) The physiological roles of primary phospholipase C. Adv Biol Regul 53:232–241

    Article  CAS  PubMed  Google Scholar 

  • Yeung PK, Hubbard JW, Korchinski ED, Midha KK (1993) Pharmacokinetics of chlorpromazine and key metabolites. Eur J Clin Pharmacol 45:563–569

    Article  CAS  PubMed  Google Scholar 

  • Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Wang G, Liu X, Wang C, Tian H, Liu A, Jin H, Luo X, Chen Y (2014) P2Y13 receptor-mediated rapid increase in intracellular calcium induced by ADP in cultured dorsal spinal cord microglia. Neurochem Res 39:2240–2250

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Zhe Liang.

Ethics declarations

This article did not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Transparency Document

The Transparency document associated with this article can be found in the online version.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, CS., Lin, YS. & Liang, WZ. The Impact of the Antipsychotic Medication Chlorpromazine on Cytotoxicity through Ca2+ Signaling Pathway in Glial Cell Models. Neurotox Res 40, 791–802 (2022). https://doi.org/10.1007/s12640-022-00507-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00507-5

Keywords

Navigation