Skip to main content

Advertisement

Log in

Regionally Impaired Redox Homeostasis in the Brain of Rats Subjected to Global Perinatal Asphyxia: Sustained Effect up to 14 Postnatal Days

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The present report evaluates the effect of global perinatal asphyxia on several parameters of oxidative stress and cell viability in rat brain tissue sampled at an extended neonatal period up to 14 days, a period characterised by intensive neuritogenesis, synaptogenesis, synaptic consolidation, pruning and delayed cell death. Perinatal asphyxia was induced by immersing foetus-containing uterine horns removed by a caesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling caesarean-delivered foetuses were manually resucitated and nurtured by surrogate dams for 1 to 14 postnatal (P) days. Brain samples (mesencephalon, telencephalon and hippocampus) were assayed for glutathione (reduced and oxidated levels; spectrophotometry), tissue reducing capacity (potassium ferricyanide reducing assay, FRAP), catalase (the key enzyme protecting against oxidative stress and reactive oxygen species, Western blots and ELISA) and cleaved caspase-3 (the key executioner of apoptosis, Western blots) levels. It was found that global PA produced a regionally specific and sustained increase in GSSG/GSH ratio, a regionally specific decrease in tissue reducing capacity and a regionally and time specific decrease of catalase activity and increase of cleaved caspase-3 levels. The present study provides evidence for regionally impaired redox homeostasis in the brain of rats subjected to global PA, an effect observed up to P14, mainly affecting mesencephalon and hippocampus, suggesting a sustained oxidative stress after the posthypoxia period. The oxidative stress observed postnatally can in part be associated to a respiratory apneic-like deficit, since there was a statistically significant decrease in respiration frequency in AS compared to CS neonates, also up to P14, together with the signs of a decreased peripheral blood perfusion (pink-blue skin colour in AS, compared to the pink colour observed in all CS neonates). It is proposed that PA implies a long-term metabolic insult, triggered by the length of hypoxia, the resuscitation/reoxigenation manoevres, but also by the developmental stage of the affected brain regions, and the integrity of cardiovascular and respiratory physiological functions, which are fundamental for warrantying a proper development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADP/ATP ratio :

Adenosine diphosphate/adenosine triphosphate ratio

a.u.:

Arbitrary units

AS:

Asphyxia-exposed rats

BCA:

Bicinchoninic acid assay

Bcl-2:

Protooncogen Bcl-2 (B cell lymphoma 2)

β-NADPH:

β-Nicotinamide adenine dinucleotide 2′-phosphate

C:

Cerebellum

Cdk:

Cyclin-dependent kinase

CNS:

Central nervous system

CS:

Caesarean-delivered rat controls

DTNB:

5, 5′-Dithio-bis-[2-nitrobenzoic acid]

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol-bis (β-aminoethyl ether)-N, N, N′, N′-tetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

FRAP:

Ferric reducing antioxidant power

Fe+2 :

Iron in oxidation state +2

GSH:

Reduced glutathione

GSSG:

Oxidised glutathione

G22:

Gestation day 22

H2O2 :

Hydrogen peroxide

HIE:

Hypoxic-ischemia encephalopathy

HI:

Hypoxic-ischemic

HRP:

Horseradish peroxidase

H2Od:

Destilated water

L:

Liver

O2 :

Oxygen

PA:

Perinatal asphyxia

PB:

Pink-blue

PKC:

Protein kinase C

P:

Postnatal day

PMSF:

Phenylmethylsulfonyl fluoride

RIPA Buffer:

Radio-immune precipitation assay buffer

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SDS:

Sodium dodecyl sulfate

SEM:

Standard error of the mean

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

WB:

Western blots

References

  • Addya KD, Sengupta D (1986) Ontogeny of human fetal catalase, superoxide dismutase and lipid peroxidation: a comparative study. J Biosci 10(3):319–322

    Article  Google Scholar 

  • Alonso-Spilsbury M, Mota-Rojas D, Villanueva-García D, Martínez-Burnes J, Orozco H, Ramírez-Necoechea R, Mayagoitia AL, Trujillo ME (2005) Perinatal asphyxia pathophysiology in pig and human: a review. Anim Reprod Sci 90(1–2):1–30

    Article  PubMed  Google Scholar 

  • Aquilano K, Baldelli S, Ciriolo MR (2014) Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol 5:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armogida M, Spalloni A, Amantea D, Nutini M, Petrelli F, Longone P, Bagetta G, Nisticò R, Mercuri NB (2011) The protective role of catalase against cerebral ischemia in vitro and in vivo. Int J Immunopathol Pharmacol 24(3):735–747

    Article  CAS  PubMed  Google Scholar 

  • Baburamani AA, Ek CJ, Walker DW, Castillo-Melendez M (2012) Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair? Front Physiol 3(424):1–21

    Google Scholar 

  • Bågenholm R, Nilsson UA, Kjellmer I (1997) Formation of free radicals in hypoxic ischemic brain damage in the neonatal rat, assessed by an endogenous spin trap and lipid peroxidation. Brain Res 773(1–2):132–138

    Article  PubMed  Google Scholar 

  • Bahubali DG, Nandakumar S, Vishnu BB, Ramachandra R, Adhisivam B, Rojo J, Prasad P, Shruti S (2013) Biochemical marker as predictor of outcome in perinatal asphyxia. Curr Pediatr Res 17(2):63–66

    Google Scholar 

  • Bakhtyukov AA, Galkina OV, Eshchenko ND (2016) The activities of key antioxidant enzymes in the early postnatal development of rats. Neurochem J 10(3):199–204

    Article  CAS  Google Scholar 

  • Benjelloun N, Renolleau S, Represa A, Ben-Ari Y, Charriaut-Marlangue C (1999) Inflammatory responses in the cerebral cortex after ischemia in the P7 neonatal rat. Stroke 30(9):1916–1923

    Article  CAS  PubMed  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  PubMed  Google Scholar 

  • Bjelke B, Andersson K, Ogren SO, Bolme P (1991) Asphyctic lesion: proliferation of tyrosine hydroxylase-immunoreactive nerve cell bodies in the rat substantia nigra and functional changes in dopamine neurotransmission. Brain Res 543: 1-9

  • Blomgren K, Hagberg H (2006) Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med 40(3):388–397

    Article  CAS  PubMed  Google Scholar 

  • Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, Bahr BA, Mallard C, Hagberg H (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 276(13):10191–10198

    Article  CAS  PubMed  Google Scholar 

  • Bolaños JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-Fernandez S, Almeida A (2008) Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: impact on neuronal survival. Biochim Biophys Acta 1777(7–8):789–793

    Article  CAS  PubMed  Google Scholar 

  • Brekke EM, Morken TS, Widerøe M, Håberg AK, Brubakk AM, Sonnewald U (2014) The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury. J Cereb Blood Flow Metab 34(4):724–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85(6):705–717

    Article  CAS  PubMed  Google Scholar 

  • Capani F, Loidl CF, Aguirre F, Piehl L, Facorro G, Hager A, De Paoli T, Farach H, Pecci-Saavedra J (2001) Changes in reactive oxygen species (ROS) production in rat brain during global perinatal asphyxia: an ESR study. Brain Res 914(1–2):204–207

    Article  CAS  PubMed  Google Scholar 

  • Capani F, Loidl CF, Piehl LL, Facorro G, De Paoli T, Hager A (2003) Long term production of reactive oxygen species during perinatal asphyxia in the rat central nervous system: effects of hypothermia. Int J Neurosci 113(5):641–654

    Article  PubMed  Google Scholar 

  • Chakravarti R, Gupta K, Majors A, Ruple L, Aronica M, Stuehr DJ (2015) Novel insights in mammalian catalase heme maturation: effect of NO and thioredoxin-1. Free Radic Biol Med 82:105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ (2015) Therapeutic hypothermia for neonatal hypoxic–ischemic encephalopathy—where to from here? Front Neurol 6(198):1–10

    CAS  Google Scholar 

  • Dawes GS (1967). Birth asphyxia, resuscitation, and brain damage. In: Foetal and neonatal physiology: a comparative study of the changes at birth. Chicago: Year Book, pp 141–159 (AU5)

  • Day BJ (2014) Antioxidant therapeutics: Pandora’s box. Free Radic Biol Med 66:58–64

    Article  CAS  PubMed  Google Scholar 

  • Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN (2014) Evaluating strategies to normalise biological replicates of Western blot data. PLoS One 9(1):e87293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dell'Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, Herrera-Marschitz M (1997) Delayed neuronal death following perinatal asphyxia in rat. Exp Brain Res 115:105–115

    Article  CAS  PubMed  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671

    Article  CAS  PubMed  Google Scholar 

  • Endrich O, Rimle C, Zwahlen M, Triep K, Raio L, Nelle M (2017) Asphyxia in the newborn: evaluating the accuracy of ICD coding, clinical diagnosis and reimbursement: observational study at a Swiss tertiary care center on routinely collected health data from 2012-2015. PLoS One 12(1):e0170691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer I, Pozas E, Lopez E, Ballabriga J (1997) Bcl-2, Bax and Bcl-x expression following hypoxia-ischemia in the infant rat brain. Acta Neuropathol 94:583–589

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16(10):1303–1314

    Article  CAS  PubMed  Google Scholar 

  • Fullerton HJ, Ditelberg JS, Chen SF, Sarco DP, Chan PH, Epstein CJ, Ferriero DM (1998) Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia. Ann Neurol 44:357–364

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Janocha AJ, Aronica MA, Swaidani S, Comhair SA, Xu W, Zheng L, Kaveti S, Kinter M, Hazen SL, Erzurum SC (2006) Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J Immunol 176(9):5587–5597

    Article  CAS  PubMed  Google Scholar 

  • Glorieux C, Sandoval JM, Fattaccioli A, Dejeans N, Garbe JC, Dieu M, Verrax J, Renard P, Huang P, Calderon PB (2016) Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress. Free Radic Biol Med 99:436–450

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FF, Miller SP (2006) Does perinatal asphyxia impair cognitive function without cerebral palsy? Arch Dis Child Fetal Neonatal Ed 91(6):F454–F459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagberg H, David Edwards A, Groenendaal F (2016) Perinatal brain damage: the term infant. Neurobiol Dis 92(Pt A):102–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Marschitz M, Morales P, Leyton L, Bustamante D, Klawitter V, Espina-Marchant P, Allende C, Lisboa F, Cunich G, Jara-Cavieres A, Neira T, Gutierrez-Hernandez MA, Gonzalez-Lira V, Simola N, Schmitt A, Morelli M, Andrew Tasker R, Gebicke-Haerter PJ (2011) Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res 19(4):603–627

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Marschitz M, Neira-Pena T, Rojas-Mancilla E, Espina-Marchant P, Esmar D, Perez R, Muñoz V, Gutierrez-Hernandez M, Rivera B, Simola N, Bustamante D, Morales P, Gebicke-Haerter PJ (2014) Perinatal asphyxia: CNS development and deficits with delayed onset. Front Neurosci 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohnholt MC, Dringen R (2014) Short time exposure to hydrogen peroxide induces sustained glutathione export from cultured neurons. Free Radic Biol Med 70:33–44

    Article  CAS  PubMed  Google Scholar 

  • Homi HM, Freitas JJ, Curi R, Velasco IT, Junior BA (2002) Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion. Neurosci Lett 333(1):37–40

    Article  CAS  PubMed  Google Scholar 

  • Hudome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res 41(5):607–616

    Article  CAS  PubMed  Google Scholar 

  • Ibi M, Sawada H, Kume T, Katsuki H, Kaneko S, Shimohama S, Akaike A (1999) Depletion of intracellular glutathione increases susceptibility to nitric oxide in mesencephalic dopaminergic neurons. J Neurochem 73(4):1696–1703

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Xia YX, Kaneko M, Sameshima H, Ikenoue T (2002) Effect of the free radical scavenger, 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), on hypoxia-ischemia-induced brain injury in neonatal rats. Neurosci Lett 329(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Ikonomidou C, Kaindl AM (2011) Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal 14(8):1535–1550

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson-Lewis V, Vila M, Djaldetti R, Guenan C, Liberatore G, Liu J, O’Malley K, Burke K, Przedbobrski S (2000) Developmental cell death in dopaminergic neurons of the substantia nigra in mice. J Comp Neurol 424:476–488

    Article  CAS  PubMed  Google Scholar 

  • Johnston MV (2005) Excitotoxicity in perinatal brain injury. Brain Pathol 15(3):234–240

    Article  CAS  PubMed  Google Scholar 

  • Khan JY, Black SM (2003) Developmental changes in murine brain antioxidant enzymes. Pediatr Res 54(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Krych-Madej J, Gebicka L (2015) Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification? Int J Biol Macromol 80:162–169

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Mittal R, Khanna HD, Basu S (2008) Free radical injury and blood-brain barrier permeability in hypoxic-ischemic encephalopathy. Pediatrics 122(3):e722–e727

    Article  PubMed  Google Scholar 

  • Lafemina MJ, Sheldon RA, Ferriero DM (2006) Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain. Pediatr Res 59(5):680–683

    Article  CAS  PubMed  Google Scholar 

  • Liu F, McCullough LD (2013) Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 34(9):1121–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low JA (1997) Intrapartum fetal asphyxia: definition, diagnosis, and classification. Am J Obstet Gynecol 176(5):957–959

    Article  CAS  PubMed  Google Scholar 

  • Lubec B, Dell'Anna E, Fang-Kircher S, Marx M, Herrera-Marschitz M, Lubec G (1997a) Decrease of brain protein kinase C, protein kinase A, and cyclin-dependent kinase correlating with pH precedes neuronal death in neonatal asphyxia. J Investig Med 45(5):284–294

    CAS  PubMed  Google Scholar 

  • Lubec B, Marx M, Herrera-Marschitz M, Labudova O, Hoeger H, Gille L, Nohl H, Mosgoeller W, Lubec G (1997b) Decrease of heart protein kinase C and cyclin-dependent kinase precedes death in perinatal asphyxia of the rat. FASEB J 11(6):482–492

    Article  CAS  PubMed  Google Scholar 

  • Min JY, Lim SO, Jung G (2010) Downregulation of catalase by reactive oxygen species via hypermethylation of CpG island II on the catalase promoter. FEBS Lett 584(11):2427–2432

    Article  CAS  PubMed  Google Scholar 

  • Misrahy GA, Beran AV, Spradley JF, Garwood VP (1960) Fetal brain oxygen. Am J Phys 199:959–964

    CAS  Google Scholar 

  • Moghadam-Kia S, Oddis CV, Aggarwal R (2016) Approach to asymptomatic creatine kinase activation. Cleve Clin J Med 83:37–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales P, Reyes P, Klawitter V, Huaiquín P, Bustamante D, Fiedler J, Herrera-Marschitz M (2005) Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures. Neuroscience 135(2):421–431

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Fiedler JL, Andrés S, Berrios C, Huaiquín P, Bustamante D, Cardenas S, Parra E, Herrera-Marschitz M (2008) Plasticity of hippocampus following perinatal asphyxia: effects on postnatal apoptosis and neurogenesis. J Neurosci Res 86(12):2650–2662

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Simola N, Bustamante D, Lisboa F, Fiedler J, Gebicke-Haerter PJ, Tasker RA, Herrera-Marschitz M (2010) Nicotinamide prevents the long-term effects of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Exp Brain Res 202: 1-14

  • Morken TS, Widerøe M, Vogt C, Lydersen S, Havnes M, Skranes J, Goa PE, Brubakk AM (2013) Longitudinal diffusion tensor and manganese-enhanced MRI detect delayed cerebral gray and white matter injury after hypoxia-ischemia and hyperoxia. Pediatr Res 73(2):171–179

    Article  CAS  PubMed  Google Scholar 

  • Mueller S, Riedel HD, Stremmel W (1997) Determination of catalase activity at physiological hydrogen peroxide concentrations. Anal Biochem 245(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Neira-Pena T, Espina-Marchant P, Rojas-Mancilla E, Esmar D, Kraus C, Munoz V, Perez R, Rivera B, Bustamante D, Valdes JL, Hermoso M, Gebicke-Haerter P, Morales P, Herrera-Marschitz M (2013) Molecular, cellular and behavioural effects produced by perinatal asphyxia: protection by poly(ADP-Ribose) polymerase 1 (PARP-1) inhibition. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer Science+Business Media, New York, pp 2075–2098

    Google Scholar 

  • Neira-Peña T, Rojas-Mancilla E, Munoz-Vio V, Perez R, Gutierrez-Hernandez M, Bustamante D, Morales P, Hermoso MA, Gebicke-Haerter P, Herrera-Marschitz M (2015) Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration. Neurotox Res 27(4):453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson KB, Ellenberg JH (1981) Apgar scores as predictors of chronic neurologic disability. Pediatrics 68:38–44

    Google Scholar 

  • Niatsetskaya ZV, Sosunov SA, Matsiukevich D, Utkina-Sosunova IV, Ratner VI, Starkov AA, Ten VS (2012) The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia–ischemia in neonatal mice. J Neurosci 32(9):3235–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls P (2012) Classical catalase: Ancient and modern. Arch Biochem Biophys 525(2):95–101

    Article  CAS  PubMed  Google Scholar 

  • Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ (2001a) Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis 8(2):207–219

    Article  CAS  PubMed  Google Scholar 

  • Northington FJ, Ferriero DM, Martin LJ (2001b) Neurodegeneration in the thalamus following neonatal hypoxia-ischemia is programmed cell death. Dev Neurosci 23(3):186–191

    Article  CAS  PubMed  Google Scholar 

  • Oo TF, Burke RE (1997) The time course of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Dev Brain Res 98:191–196

    Article  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2011) Cell deth mechanisms and their implications in toxicology. Toxicol Sci 119:3–19

    Article  CAS  PubMed  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucosamine. J Nutr 44:307–315

    CAS  Google Scholar 

  • Pan R, Rong Z, She Y, Cao Y, Chang LW, Lee WH (2012) Sodium pyruvate reduces hypoxic-ischemic injury to neonatal rat brain. Pediatr Res 72:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Lobos R, Lespay-Rebolledo C, Tapia-Bustos A, Palacios E, Vío V, Bustamante D, Morales P, Herrera-Marschitz M (2017) Vulnerability to a metabolic challenge following perinatal asphyxia evaluated by organotypic cultures: neonatal nicotinamide treatment. Neurotox Res 32(3):426–443

    Article  CAS  PubMed  Google Scholar 

  • Perrone S, Szabó M, Bellieni CV, Longini M, Bangó M, Kelen D, Treszl A, Negro S, Tataranno ML, Buonocore G (2010) Whole body hypothermia and oxidative stress in babies with hypoxic-ischemic brain injury. Pediatr Neurol 43(4):236–240

    Article  PubMed  Google Scholar 

  • Phelan JP, Ahn MO (1994) Perinatal observations in forty eight neurologically impaired term infants. Am J Obstet Gynecol 171(2):424–431

    Article  CAS  PubMed  Google Scholar 

  • Rani A, Prasad S (2014) CoCl2-induced biochemical hypoxia down regulates activities and expression of super oxide dismutase and catalae in cerebral cortex of mice. Neurochem Res 39:1787–1796

    Article  CAS  PubMed  Google Scholar 

  • Seema S, Kumar GA, Mamta P, Sumitra B (2014) Correlation of oxidative stress biomarker and serum marker of brain injury in hypoxic ischemic encephalopathy. Int J Med Appl Sci 3(1):106–115

    CAS  Google Scholar 

  • Shah PS, Perlman M (2009) Time courses of intrapartum asphyxia: neonatal characteristics and outcomes. Am J Perinatol 26(1):39–44

    Article  PubMed  Google Scholar 

  • Shah PS, Raju NV, Beyene J, Perlman M (2003) Recovery of metabolic acidosis in term infants with postasphyxial hypoxic-ischemic encephalopathy. Acta Paediatr 92(8):941–947

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Riphagen S, Beyene J, Perlman M (2004) Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 89(2):F152–F155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon RA, Jiang X, Francisco C, Christen S, Vexler ZS, Täuber MG, Ferriero DM (2004) Manipulation of antioxidant pathways in neonatal murine brain. Pediatr Res 56(4):656–662

    Article  CAS  PubMed  Google Scholar 

  • Spolarics Z, Wu JX (1997) Role of glutathione and catalase in H2O2 detoxification in LPS-activated hepatic endothelial and Kupffer cells. Am J Phys 273(6 Pt 1):G1304–G1311

    CAS  Google Scholar 

  • Szymankiewicz M, Matusszczak-Wieklak M, Vidyasagar D, Gadzinowski J (2006) Retrospective diagnosis of hypoxic myochardial injury in premature newborns. J Perinat Med 34:220–225

    Article  PubMed  Google Scholar 

  • Tapia-Bustos A, Perez-Lobos R, Vío V, Lespay-Rebolledo C, Palacios E, Chiti-Morales A, Bustamante D, Herrera-Marschitz M, Morales P (2017) Modulation of postnatal neurogenesis by perinatal asphyxia: effect of D1 and D2 dopamine receptor agonists. Neurotox Res 31(1):109–121

    Article  CAS  PubMed  Google Scholar 

  • Thoresen M, Penrice J, Lorek A, Cady EB, Wylezinska M, Kirkbride V, Cooper CE, Brown GC, Edwards AD, Wyatt JS, Reynolds EOR (1995) Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res 37(5):667–670

    Article  CAS  PubMed  Google Scholar 

  • Vannucci SJ, Hagberg H (2004) Hypoxia–ischemia in the immature brain. J Exp Biol 207(Pt 18):3149–3154

    Article  CAS  PubMed  Google Scholar 

  • Vasiljević B, Maglajlić-Djukić S, Gojnić M, Stanković S (2012) The role of oxidative stress in perinatal hypoxic-ischemic brain injury. Srp Arh Celok Lek 140(1–2):35–41

    Article  PubMed  Google Scholar 

  • Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Vitalis T, Cases O, Parnavelas JG (2005) Development of the dopaminergic neurons in the rodent brainstem. Exp Neurol 191:104–112

    Article  CAS  Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Goenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    Article  CAS  PubMed  Google Scholar 

  • Wallin C, Puka-Sundvall M, Hagberg H, Weber SG, Sandberg M (2000) Alterations in glutathione and amino acid concentrations after hypoxia–ischemia in the immature rat brain. Brain Res Dev Brain Res 125:51–60

    Article  CAS  PubMed  Google Scholar 

  • Weis SN, Schunck RV, Pettenuzzo LF, Krolow R, Matté C, Manfredini V, do Carmo R, Peralba M, Vargas CR, Dalmaz C, Wyse AT, Netto CA (2011) Early biochemical effects after unilateral hypoxia-ischemia in the immature rat brain. Int J Dev Neurosci 29(2):115–120

    Article  CAS  PubMed  Google Scholar 

  • Winerdal M, Winerdal ME, Kinn J, Urmaliya V, Winqvist O, Adén U (2012) Long lasting local and systemic inflammation after cerebral hypoxic ischemia in newborn mice. PLoS One 7(5):e36422 1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100:30–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Contract grant sponsors: FONDECYT-Chile (#1120079; 1180042). CONICYT Operacional Support 21140281. LRC (#21140281), TBA (#21151232), PLR (#21130739), are CONICYT-Chile fellows. VV (UCH074; MECESUP-Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Herrera-Marschitz.

Ethics declarations

All procedures were conducted in accordance with the animal care and use protocol established by a Local Ethics Committee for experimentation with laboratory animals at the Medical Faculty, University of Chile (Protocol CBA# 0722 FMUCH) and by an ad-hoc commission of the Chilean Council for Science and Technology Research (CONICYT), endorsing the principles of laboratory animal care (NIH; No. 86-23; revised 1985). Animals were permanently monitored (on 24 h basis) regarding wellbeing, following the ARRIVE guidelines for reporting animal studies (www.nc3rs.org.uk/ARRIVE).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lespay-Rebolledo, C., Perez-Lobos, R., Tapia-Bustos, A. et al. Regionally Impaired Redox Homeostasis in the Brain of Rats Subjected to Global Perinatal Asphyxia: Sustained Effect up to 14 Postnatal Days. Neurotox Res 34, 660–676 (2018). https://doi.org/10.1007/s12640-018-9928-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9928-9

Keywords

Navigation