Skip to main content
Log in

Nano amphotericin B: a good anti-leishmanial drug with effect on cathelicidin gene expression

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Protozoan parasites, such as Leishmania major (L. major), remained as a global health problem of the current century. Leishmania major is a major cause of cutaneous leishmaniasis (CL) in developed and developing countries. Traditionally, amphotericin B is prescribed as an alternative drug, while first-line drugs failed. Some active proteins of the innate immune system such as cathelicidins try to inhibit infection Via several proposed mechanisms. Here this research aimed to not only determine the anti-leishmanial activity of nano amphotericin B but also to evaluate which anti-leishmanial drug can induce the cathelicidin gene expression. Both promastigote and amastigote stages of L. major were exposed to various concentrations of nano amphotericin B, amphotericin B and finally compared to glucan time as standard drug for CL treatment. For the gene expression of cathelicidin, macrophages were exposed to the same concentration of anti-leishmanial drugs. The findings demonstrated that nano amphotericin B was more effective at all concentrations than amphotericin B. Additionally, among tested anti-leishmanial drugs, nano amphotericin B has more potency to induce the cathelicidin gene expression in macrophages cells. The findings revealed that nano amphotericin B has potential as an effective anti-leishmanial drug against CL caused by L. major parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhoundi M et al (2013) Geographical distribution of Leishmania species of human cutaneous leishmaniasis in Fars province, southern Iran. Iran J Parasitol 8(1):85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akhoundi M et al (2016) A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoSNegl Trop Dis 10(3):e0004349

    Article  Google Scholar 

  • Alvar J et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7(5):e35671

    Article  CAS  Google Scholar 

  • Asadi A, TavakoliKareshk A, Sharifi I, Firouzeh N (2020) Murine cathelicidin: as a host defensive response against Leishmania major infection. J Parasit Dis. https://doi.org/10.1007/s12639-020-01238-0

    Article  PubMed  Google Scholar 

  • Cavalcante CS et al (2017) Anti-fungal activity of Ctn[15-34], the C-terminal peptide fragment of crotalicidin, a rattlesnake venom gland cathelicidin. J Antibiot 70(3):231–237

    Article  CAS  Google Scholar 

  • Copeland NK, Aronson NE (2015) Leishmaniasis: treatment updates and clinical practice guidelines review. CurrOpin Infect Dis 28(5):426–437

    Article  CAS  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. ClinMicrobiol Rev 19(1):111–126

    CAS  Google Scholar 

  • Daneshvar H, Sharifi I, Keyhani A, TavakoliKareshk A, Asadi A (2017) Comparative analysis of antimicrobial peptides gene expression in susceptible/resistant mice macrophages to Leishmania major infection. Middle East J Fam Med 7(10):18

    Article  Google Scholar 

  • Daneshvar H, TavakoliKareshk A, SharifiI KA, TavakoliOliaee R, Asadi A et al (2018) Host-parasite responses outcome regulate the expression of antimicrobial peptide genes in the skin of BALB/c and C57BL/6 murine strains following Leishmania major MRHO/ IR/75/ER infection. Iran J Parasitol 13(4):515–523

    PubMed  PubMed Central  Google Scholar 

  • Desjeux P (1996) Leishmaniasis: public health aspects and control. ClinDermatol 14(5):417–423

    CAS  Google Scholar 

  • Dorschner RA et al (2003) Neonatal skin in mice and humans expresses increased levels of antimicrobial peptides: innate immunity during development of the adaptive response. Pediatr Res 53(4):566–572

    Article  CAS  Google Scholar 

  • Faridi A, TavakoliKareshk A, Sadooghian S et al (2020) Frequency of different genotypes of Giardia duodenalis in slaughtered sheep and goat in east of Iran. J Parasit Dis 44:618–624. https://doi.org/10.1007/s12639-020-01237-1

    Article  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. BiotechnolAdv 29(6):792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007

    Article  CAS  Google Scholar 

  • Grogl M, Thomason TN, Franke ED (1992) Drug resistance in leishmaniasis: its implication in systemic chemotherapy of cutaneous and mucocutaneous disease. Am J Trop Med Hyg 47(1):117–126

    Article  CAS  Google Scholar 

  • Jahanbakhsh S, Azadpour M, TavakoliKareshk A et al (2016) Zataria multifloraBioss: lethal effects of methanolic extract against protoscoleces of Echinococcus granulosus. J Parasit Dis 40(4):1289–1292. https://doi.org/10.1007/s12639-015-0670-4

    Article  PubMed  Google Scholar 

  • Jolliffe D (1985) Nephrotoxicity of pentavalentantimonials. The Lancet 325(8428):584

    Article  Google Scholar 

  • Kao C et al (2016) Cathelicidin antimicrobial peptides with reduced activation of toll-like receptor signaling have potent bactericidal activity against Colistin-resistant bacteria. MBio 7(5):01418–01516

    Article  Google Scholar 

  • Keyhani A, Mahmoudvand H, Shakibaie M, TavakoliKareshk A et al (2018) Histopathological and toxicological study of selenium nanoparticles in BALB/C mice. EntomolApplSciLett 5(1):31–35

    Google Scholar 

  • Keyhani A, Ziaal N, Shakibaie M, TavakoliKareshk A et al (2020) Biogenic selenium nanoparticles target chronic toxoplasmosis with minimal cytotoxicity in a mouse model. J Med Microbiol 69(1):104–110

    Article  CAS  Google Scholar 

  • Keyhani A, Shakibaie M, Mahmoudvand H, Jahanbakhsh S, TavakoliKareshk A, Shojaee S, Ziaali N (2020) Prophylactic activity of biogenic selenium nanoparticles against chronic Toxoplasma gondii infection. Recent Pat Antiinfect Drug Discov. https://doi.org/10.2174/1574891X15666200604115001

    Article  PubMed  Google Scholar 

  • Le Blancq S, Schnur L, Peters W (1986) Leishmania in the Old World: 1. The geographical and hostal distribution of L. majorzymodemes. Trans R Soc Trop Med Hyg 80(1):99–112

    Article  Google Scholar 

  • Mahmoudvand H, TavakoliKareshk A, Moradi M et al (2020) Efficacy and safety of Zataria multifloraBoiss essential oil against acute toxoplasmosis in mice. Iran J Parasitol 15(1):22–30

    PubMed  PubMed Central  Google Scholar 

  • Mahmoudvand H, Pakravanan M, Aflatoonian M, KhudairKhalaf A, Niazi M, Reza MS, TavakoliKareshk A, Khatami M (2019) Efficacy and safety of Curcuma longa essential oil to inactivate hydatid cyst protoscoleces. BMC Complement Altern Med 19(1):187. https://doi.org/10.1186/s12906-019-2527-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malakootian M, Khatami M, Ahmadian M, Asadzadeh SN (2019) Biogenic silver nanoparticles/hydrogen peroxide/ozone: efficient degradation of reactive blue 19. BioNanoScience 10(5):1–8

    Google Scholar 

  • McGwire B, Satoskar A (2013) Leishmaniasis: clinical syndromes and treatment. Qjm Int J Med 107(1):7–14

    Article  Google Scholar 

  • Mehrizi T, ShafieeArdestani M, MollaHosein MI, Ramezani A (2018) Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine. https://doi.org/10.2217/nnm-2018-0063

    Article  PubMed  Google Scholar 

  • Mello CP et al (2017) Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland. Toxicon 130:56–62

    Article  CAS  Google Scholar 

  • Monzote L (2009) Current treatment of leishmaniasis: a review. Open Antimicrob Agents J 1:9–19

    CAS  Google Scholar 

  • Nizet V, Gallo RL (2003) Cathelicidins and innate defense against invasive bacterial infection. Scand J Infect Dis 35(9):670–676

    Article  CAS  Google Scholar 

  • Okwor I, Uzonna J (2016) Social and economic burden of human Leishmaniasis. Am J Trop Med Hyg 94(3):489–493

    Article  Google Scholar 

  • Sahoo SK, Parveen J, Panda J (2007) The present and future of nanotechnology in human health care. Nanomed Nanotech Biol Med 3(1):20–31

    Article  CAS  Google Scholar 

  • Shojaee S, Firouzeh N, Keshavarz H et al (2019) Nanosilver colloid inhibits Toxoplasma gondiitachyzoites and bradyzoites in vitro. Iran J Parasitol 14(3):362–367

    PubMed  PubMed Central  Google Scholar 

  • Soto J et al (2004) Miltefosine for new world cutaneous leishmaniasis. Clin Infect Dis 38(9):1266–1272

    Article  CAS  Google Scholar 

  • Sundar S et al (2004) Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations. Clin Infect Dis 38(3):377–383

    Article  CAS  Google Scholar 

  • Tavakoli OR, Sharifi I, Afkar A, Jafarzadeh A, TavakoliKareshk A et al (2019) Differential expression of TLRs 2, 4, 9, iNOS and TNF-a and arginase activity in peripheral blood monocytes from glucantime unresponsive and responsive patients with anthroponotic cutaneous leishmaniasis caused by Leishmania tropica. MicrobPathog 126:368–378

    Google Scholar 

  • Tavakoli OR, Sharifi I, Afkar A, TavakoliKareshk A, Asadi A et al (2018) Unresponsiveness to meglumineantimoniate in anthroponotic cutaneous leishmaniasis field isolates: analysis of resistance biomarkers by gene expression profiling. Trop Med Int Health 23(6):622–633

    Article  Google Scholar 

  • TavakoliKareshk A et al (2015) Efficacy of the Bunium persicum (Boiss) essential oil against acute toxoplasmosis in mice model. Iran J Parasitol 10(4):625–631

    Google Scholar 

  • Tripathi P, Kumar Jaiswal A, Dube A, Ranjan Mishra P (2017) Hexadecylphosphocholine (Miltefosine) stabilized chitosan modified Ampholipospheres as prototype co-delivery vehicle for enhanced killing of L. donovani. Int J BiolMacromol 105(Pt 1):625–637. https://doi.org/10.1016/j.ijbiomac.2017.07.076

    Article  CAS  Google Scholar 

  • Vieira-Girao PR et al (2017) Antiviral activity of Ctn[15-34], a cathelicidin-derived Eicosapeptide, against infectious myonecrosis virus in Litopenaeus vannamei primary hemocyte cultures. Food Environ Virol 16(10):017–9285

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all staff from the Leishmania research center in Iran and Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran for their useful assistance.

Funding

No research grants have been considered for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Amir Tavakoli Kareshk.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this work.

Ethical approval to work on animals

The present study is approved by Ethical Review Board of Kerman University of Medical Sciences (Kerman, Iran) code IR.KMU.REC.1394.208.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouzeh, N., Asadi, A. & Tavakoli Kareshk, A. Nano amphotericin B: a good anti-leishmanial drug with effect on cathelicidin gene expression. J Parasit Dis 45, 366–371 (2021). https://doi.org/10.1007/s12639-020-01308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-020-01308-3

Keywords

Navigation