Skip to main content
Log in

Effect of foliar-applied Si in alleviating cadmium toxicity to different Raya (Brassica Junceae L.) genotypes

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

Heavy metal toxicity poses severe threats to soil and crop productivity. Cadmium (Cd) toxicity disrupts plant metabolism, reducing growth and yield. Si has emerged as a potential element in the context of metal toxicity, playing a crucial role in the compartmentalization and immobilization of metal ions. This study explores the potential of foliar-applied Si to mitigate Cd toxicity in Raya (Brassica juncea L.).

Methods

Seedlings underwent Cd toxicity induction using CdCl2 (300 μM) along with control (0 μM) and were subjected to foliar Si application of Na2SiO3 (0 and 500 ppm). The impact on agronomic parameters, photosynthetic pigments, antioxidants (SOD, POD, CAT), and stress markers (H2O2, MDA, proline) was evaluated.

Results

Cd stress reduced agronomic parameters, while Si application, particularly in Super Raya, showed positive effects under stress and non-stress conditions. Photosynthetic pigments decreased in response to Cd stress, although Si had a significant effect. Biochemical attributes such as antioxidants (SOD, POD, and CAT) and stress markers (H2O2, MDA, and proline) increased, with positive effects shown in the Cd+Si treatment.

Conclusion

This study unveils the potential of foliar-applied Si to alleviate Cd-induced toxicity in Raya, offering novel insights into its impact on agronomic and physico-chemical attributes. Si application emerges as an effective strategy to limit Cd uptake in aerial parts of the plant, paving the way for future research in optimizing Si application for enhanced plant resilience to heavy metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Kang L, Qian L, Zheng M, Chen L, Chen H, Yang L, You L, Yang B, Yan M, Gu Y, Wang T (2021) Genomic insights into the origin, domestication and diversification of Brassica juncea. Nat Genet 53(9):1392–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rai PK, Yadav P, Kumar A, Sharma A, Kumar V, Rai P (2022) Brassica juncea: A Crop for Food and Health. In: Kole, C., Mohapatra, T. (eds) The Brassica juncea Genome. Compend Plant Genom Springer Cham. https://doi.org/10.1007/978-3-030-91507-0_1

  3. Nadeem MA, Muhammad H, Ullah Z, Khan AM (2017) Rohi Sarsoon: A new high yielding rapeseed variety released for general cultivation in south Punjab (Pakistan). Asian J Agric Biol 5:251–256

    Google Scholar 

  4. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  5. Fischer S, Kühnlenz T, Thieme M, Schmidt H, Clemens S (2014) Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification. Environ Sci Technol 48:7552–7559

    Article  CAS  PubMed  Google Scholar 

  6. Rashid A, Schutte BJ, Ulery A, Deyholos MK, Sanogo S, Lehnhoff EA, Beck L (2023) Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy 13(6):1521. https://doi.org/10.3390/agronomy13061521

    Article  CAS  Google Scholar 

  7. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J Chem. https://doi.org/10.1155/2019/6730305

    Article  Google Scholar 

  8. Asgher M, Rehaman A, Islam SN, Khan NA (2024) Multifaceted roles of silicon nanoparticles in heavy metals-stressed plants. Environ Pollut 341:122886. https://doi.org/10.1016/j.envpol.2023.122886

    Article  CAS  PubMed  Google Scholar 

  9. Bhunia P (2017) Environmental toxicants and hazardous contaminants: Recent advances in technologies for sustainable development. J Hazard Toxic Radioact Waste 21:02017001. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000366

    Article  Google Scholar 

  10. Chin NP (2010) Environmental toxins: Physical, social, and emotional. Breastfeed Med 5:223–224. https://doi.org/10.1089/bfm.2010.0050

    Article  PubMed  PubMed Central  Google Scholar 

  11. Diaz-Barriga R, Santos MA, Mejia JJ, Batres L, Yanez L, Carrizales L, Vera E, Del Razo LM, Cebrian ME (1993) Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potose. Mexico Environ Res 62:242–250

    Article  CAS  PubMed  Google Scholar 

  12. Karn R, Ojha N, Abbas S, Bhugra S (2021) A review on heavy metal contamination at mining sites and remedial techniques. IOP Conf Ser Earth Environ Sci 796:012013. https://doi.org/10.1088/1755-1315/796/1/012013

    Article  Google Scholar 

  13. Richter P, Faroon O, Pappas RS (2017) Cadmium and cadmium/zinc ratios and tobacco-related morbidities. Int J Environ Res Public Health 14:1154–1172

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soil and water: A review. App Geochem 108:1–16. https://doi.org/10.1016/j.apgeochem.2019.104388

    Article  CAS  Google Scholar 

  15. Smolders E, Mertens J (2013) Camium. In: Alloway, B. (eds) Heavy Metals in Soils. Environ Pollut 22. https://doi.org/10.1007/978-94-007-4470-7_10

  16. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Milani A, Basirnejad M, Shahbazi S, Bolhassani A (2017) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174:1290–1324

    Article  CAS  PubMed  Google Scholar 

  18. Mohamed AA, Castagna A, Ranieri A, di Toppi LS (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22

    Article  CAS  PubMed  Google Scholar 

  19. Agnihotri A, Gupta P, Dwivedi A, Seth CS (2018) Counteractive mechanism (s) of salicylic acid in response to lead toxicity in Brassica juncea (L.) Czern. cv. Varuna Planta 248:49–68. https://doi.org/10.1007/s00425-018-2867-0

    Article  CAS  PubMed  Google Scholar 

  20. Praveen A, Pandey C, Ehasanullah KH, Panthri M, Gupta M (2020) Silicon-mediated genotoxic alterations in Brassica juncea under arsenic stress: A comparative study of biochemical and molecular markers. Pedosphere 30:517–527

    Article  CAS  Google Scholar 

  21. Wang J, Fang Y, Tian B, Zhang X, Zeng D, Guo L, Hu J, Xue D (2018) New QTLs identified for leaf correlative traits in rice seedlings under cadmium stress. Plant Growth Regul 85(2):329–335

    Article  CAS  Google Scholar 

  22. Yadav M, Gupta P, Seth CS (2022) Foliar application of α-lipoic acid attenuates cadmium toxicity on photosynthetic pigments and nitrogen metabolism in Solanum lycopersicum L. Acta Physiol Plant 44:11. https://doi.org/10.1007/s11738-022-03445-z

    Article  CAS  Google Scholar 

  23. Gheshlaghpour J, Asghari B, Khademian R, Sedaghati B (2021) Silicon alleviates cadmium stress in basil (Ocimum basilicum L.) through alteration of phytochemical and physiological characteristics. Ind Crops Prod 163:1–12

    Article  Google Scholar 

  24. Seth SC, Chaturvedi PK, Misra V (2007) Toxic Effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environ Toxicol 22:539–549. https://doi.org/10.1002/tox.20292

    Article  CAS  PubMed  Google Scholar 

  25. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  26. Aslam MM, Okal EJ, Waseem M (2023) Cadmium toxicity impacts plant growth and plant remediation strategies. Plant Growth Regul 99:397–412. https://doi.org/10.1007/s10725-022-00917-7

    Article  CAS  Google Scholar 

  27. Mariyam S, Bhardwaj R, Khan NA, Sahi SV, Seth CS (2023) Review on nitric oxide at the forefront of rapid systemic signaling in mitigation of salinity stress in plants: Crosstalk with calcium and hydrogen peroxide. Plant Sci 336:111835. https://doi.org/10.1016/j.plantsci.2023.111835. (ISSN 0168-9452)

    Article  CAS  PubMed  Google Scholar 

  28. Kapoor D, Singh MP, Kaur S, Bhardwaj R, Zheng B, Sharma A (2019) Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea. Plants 8(8):260–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Labidi O, Vives-Peris V, Gomez-Cadenas A, Perez-Clemente RM, Sleimi N (2021) Assessing of growth, antioxidant enzymes, and phytohormone regulation in Cucurbita pepo under cadmium stress. Food Sci Nutr 9(4):2021–2031. https://doi.org/10.1002/fsn3.2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samanta S, Seth CS, Roychoudhury A (2024) The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. Plant Physiol Biochem 206:108259. https://doi.org/10.1016/j.plaphy.2023.108259

    Article  CAS  PubMed  Google Scholar 

  31. Choudhary R, Rajput VD, Ghodake G et al (2024) Comprehensive journey from past to present to future about seed priming with hydrogen peroxide and hydrogen sulfide concerning drought, temperature. Plant Soil, UV and ozone stresses- a review. https://doi.org/10.1007/s11104-024-06499-9

    Book  Google Scholar 

  32. Nazir F, Fariduddin Q, Khan TA (2020) Hydrogen peroxide as a signaling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 252:126486. https://doi.org/10.1016/j.chemosphere.2020.126486

    Article  CAS  PubMed  Google Scholar 

  33. Nazar R, Iqbal N, Masood A, Khan MI, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1–4

    Article  Google Scholar 

  34. Raziuddin F, Hassan G, Akmal M, Shah SS, Mohammad F, Shafi M, Bakht J, Zhou W (2011) Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pak J Bot 43(1):333–340

    CAS  Google Scholar 

  35. Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  36. Greger M, Kabir AH, Landberg T, Maity PJ, Lindberg S (2016) Silicate reduces cadmium uptake into cells of wheat. Environ Pollut 211:90–97

    Article  CAS  PubMed  Google Scholar 

  37. Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F et al (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res Int 23(18):17859–17879

    Article  CAS  PubMed  Google Scholar 

  38. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes – a review. J of Plant Nutrition and Soil Sci 169:310–329

    Article  CAS  Google Scholar 

  39. Gomez-Merino FC, Trejo-Tellez LI (2018) The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In: Vats, S. (eds) Biotic and Abiotic Stress Tolerance in Plants. Springer Singapore. https://doi.org/10.1007/978-981-10-9029-5_6

  40. Ahmad A, Khan WU, Shah AA, Yasin NA, Naz S, Ali A, Tahir A, Batool AI (2021) Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance, and reduction of arsenic uptake in Brassica juncea. Chemosphere 262:1–9

    Article  Google Scholar 

  41. Siddiqui H, Yusuf M, Faraz A, Faizan M, Sami F, Hayat S (2018) 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. South Afri J of Bot 118:120–128

    Article  CAS  Google Scholar 

  42. Naeem A, Saifullah Ghafoor A, Farooq M (2015) Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. J Sci Food Agric 95(12):2467–2472

  43. Vaculik M, Pavlovic A, Lux A (2015) Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicol Environ Saf 120(9):66–73

    Article  CAS  PubMed  Google Scholar 

  44. Bari MA, Prity SA, Das U, Akther MS, Sajib SA, Reza MA, Kabir AH (2020) Silicon induces phytochelatin and ROS scavengers facilitating cadmium detoxification in rice. Plant Biol 22:472–479

    Article  CAS  PubMed  Google Scholar 

  45. Zaheer MM, Yasin NA, Ahmad SR, Khan WU, Ahmad A, Ali A, Rehman SU (2018) Amelioration of cadmium stress in gladiolus (Gladiolus grandiflora L.) by application of potassium and silicon. J Plant Nutr 41:461–476

    Article  CAS  Google Scholar 

  46. Kabir AH, Hossain MM, Khatun MA, Mandal A, Haider SA (2016) Role of silicon counteracting cadmium toxicity in alfalfa (Medicago sativa L.). Front Plant Sci 7:1–12

    Article  Google Scholar 

  47. Wu Z, Liu S, Zhao J, Wang F, Du Y, Zou S, Li H, Wen D, Huang, (2017) Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 133:1–11

    Article  Google Scholar 

  48. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  CAS  PubMed  Google Scholar 

  49. Kumar D, Dhankher OP, Tripathi RD, Seth CS (2023) Titanium dioxide nanoparticles potentially regulate the mechanism(s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J of Hazard Mater 454:131–418. https://doi.org/10.1016/j.jhazmat.2023.131418

    Article  CAS  Google Scholar 

  50. Seth SC, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol and Environ Safety 71:76–85

    Article  CAS  Google Scholar 

  51. Singh D, Agnihotri A, Seth CS (2017) Interactive effects of EDTA and oxalic acid on chromium uptake, translocation and photosynthetic attributes in Indian mustard (Brassica juncea L. var. Varuna). Current Sci 112:(10) 2034–2042 http://www.jstor.org/stable/26163942

  52. Fan P, Wu L, Wang Q, Wang Y, Luo H, Song J, Yang M, Yao H, Chen S (2023) Physiological and molecular mechanisms of medicinal plants in response to cadmium stress: Current status and future perspective. J Hazard Mater 450:131008. https://doi.org/10.1016/j.jhazmat.2023.131008. (ISSN 0304-3894)

    Article  CAS  PubMed  Google Scholar 

  53. Upadhyaya G, Mondal S, Roychoudhury A (2023) Arsenic and cadmium toxicity in plants: Mitigation and remediation strategies. In: Aftab, T. (eds) Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies. Springer Cham. https://doi.org/10.1007/978-3-031-22269-6_10

  54. Cobbet CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  Google Scholar 

  55. Hartley SE, DeGabriel JL (2016) The ecology of herbivore induced silicon defences in grasses. Funct Ecol 30:131–1322

    Article  Google Scholar 

  56. Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272(1–2):53–60

    Article  CAS  Google Scholar 

  57. Vaculik M, Landberg T, Greger M, Luxova M, Stolarikova M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110(2):433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann of Bot 100:1383–1389

    Article  CAS  Google Scholar 

  59. Deshmukh RK, Ma JF, Bélanger RR (2017) Role of silicon in plants. Front Plant Sci 8:1858

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rios J, Martínez-Ballesta MC, Ruiz JM, Blasco B, Carvajal M (2017) Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Front Plant Sci 8:948

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dhingra P, Sharma S, Singh KH, Khushwaha HS, Barupal JK, Haq S, Khothari SL, Kachhwaha S (2022) Seed priming with carbon nanotubes and silicon dioxide nanoparticles influence agronomic traits of Indian mustard (Brassica juncea) in field experiments. J King Saud Uni Science 34:102067. https://doi.org/10.1016/j.jksus.2022.102067

    Article  Google Scholar 

  62. Taiz L, Zeiger E (2002) Plant Physiology, 3rd edn. Sinaver Associates Inc, Publishers Sunderland, Massachusetts

    Google Scholar 

  63. Dolph GE (1977) The effect of different calculational techniques on the estimation of leaf area and the construction of leaf size distributions. Bull Torrey Bot Club 104:264–269

    Article  Google Scholar 

  64. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris Plant Physiol 24:1–15

    CAS  PubMed  Google Scholar 

  65. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Acad Press 2:764–775

    Google Scholar 

  66. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hamilton PB, Van Slyke DD (1943) Amino acid determination with ninhydrin. J Biol Chem 150:231–250

    Article  CAS  Google Scholar 

  68. Bradford HF, Ward HK, Thomas AJ (1978) Glutamine-a major substrate for nerve endings. J Neurochem 30:1453–1459

    Article  CAS  PubMed  Google Scholar 

  69. Hodges DM, Nozzolillo C (1996) Anthocyanin and anthocyanoplast content of cruciferous seedlings subjected to mineral nutrient deficiencies. J Plant Physiol 147:749–754

    Article  CAS  Google Scholar 

  70. Bates LS, Waldren RA, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  71. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  72. Velikova VI, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  73. Cresser MS, Parsons JW (1979) Sulphuric Perchloric acid digestion of plant material for the determination of nitrogen, phosphorus, potassium, calcium and magnesium. Anal Chim Acta 109:431–436

    Article  CAS  Google Scholar 

  74. Chapman HD, Pratt PF (1962) Methods of analysis for soils, plants and waters. Soil Sci 93:68–72

    Article  Google Scholar 

  75. Waheed A, Haxim Y, Islam W, Ahmad M, Ali S, Wen X, Khan KA, Ghramh HA, Zhang Z, Zhang D (2022) Impact of cadmium stress on growth and physio-biochemical attributes of Eruca sativa Mill. Plants 11:2981. https://doi.org/10.3390/plants11212981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alam P, Balawi TA, Qadir SU, Ahmad P (2023) Gibberellic acid and silicon ameliorate NaCl toxicity in Brassica juncea: Possible involvement of antioxidant system and ascorbate-glutathione cycle. Plants 12:1210. https://doi.org/10.3390/plants12061210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anwar T, Qureshi H, Fatimah H, Siddiqi EH, Anwaar S, Moussa IM, Adil MF (2023) Improvement of physio-biochemical attributes and mitigation of salinity stress by combined application of melatonin and silicon nanoparticles in Brassica oleracea var. botrytis. Scientia Hort 322:112456. https://doi.org/10.1016/j.scienta.2023.112456

    Article  CAS  Google Scholar 

  78. Nouairi I, Ammar WB, Youssef NB, Daoud DB, Ghorbal MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519

    Article  CAS  Google Scholar 

  79. Vatehova Z, Kollarova K, Zelko I, Richterova-Kucerova D, Bujdos M, Liskova D (2012) Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia (Bratisl) 67:498–504

    Article  CAS  Google Scholar 

  80. Irfan M, Hasan SA, Hayat S, Ahmad S (2015) Photosynthetic variation and yield attributes of two mustard varieties against cadmium phytotoxicity. Cogent Food Agric 1:1106186

    Article  Google Scholar 

  81. Ashfaque F, Inam A, Iqbal S, Sahay S (2017) Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). South African J Bot 111:153–160

    Article  CAS  Google Scholar 

  82. Vaculik M, Lux A, Luxova M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52–58

    Article  CAS  Google Scholar 

  83. Redondo-Gomez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184:299–307

    Article  CAS  PubMed  Google Scholar 

  84. Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic (Amsterdam) 123:521–530

    Article  CAS  Google Scholar 

  85. Sai Kachout S, Ennajah A, Guenni K, Ghorbel N, Zoghlami A (2023) Potential of halophytic plant Atriplex hortensis for phytoremediation of metal-contaminated soils in the mine of Tamra. Soil and Sediment Contamination: An Int J. https://doi.org/10.1080/15320383.2023.2185469

  86. Thind S, Hussain I, Ali S, Rasheed R, Ashraf MA (2021) Silicon Application modulates growth, physio-chemicals, and antioxidants in wheat (Triticum aestivum L.) exposed to different cadmium regimes. Dose-Response 19:1–15. https://doi.org/10.1177/15593258211014646

    Article  CAS  Google Scholar 

  87. Bauddh K, Singh RP (2011) Differential toxicity of cadmium to mustard (Brassica juncia L.) genotypes under higher metal levels. J Environ Biol 32:355–362

    CAS  PubMed  Google Scholar 

  88. Pavlovic A, Masarovicova E, Kralova K, Kubova J (2006) Response of chamomile plants (Matricaria recutita L.) to cadmium treatment. Bull Environ Contam Toxicol 77:763–771

    Article  CAS  PubMed  Google Scholar 

  89. Simola LK (1977) The effect of lead, cadmium, arsenate and fluoride ions on the growth and fine structure of Sphagnum nemoreum in aseptic culture. Can J Bot 90:375–405

    Google Scholar 

  90. Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mungbean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89

    Article  CAS  Google Scholar 

  91. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  92. Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24:399–405

    CAS  Google Scholar 

  93. Bera AK, Bokaria K (1999) Effect of tannery effluent on seed germination, seedling growth and chloroplast pigment content in mungbean (Vigna radiata L.). Environ Ecol 17:958–961

    Google Scholar 

  94. Azeem M, Sultana R, Mahmood A et al (2023) Ascorbic and salicylic acids vitalized growth, Biochemical Responses, Antioxidant enzymes, Photosynthetic efficiency, and ionic regulation to alleviate salinity stress in Sorghum bicolor. J Plant Growth Regul. https://doi.org/10.1007/s00344-023-10907-2

    Article  Google Scholar 

  95. Faisal S, Muhammad S, Luqman M, Hasnain M, Rasool A, Awan MUF, Khan ZI, Hussain I (2023) Effects of priming on seed germination, physico-chemistry and yield of late sown wheat crop (Triticum aestivum L). Pol J Environ Stud 32(2):1–12. https://doi.org/10.15244/pjoes/155970

    Article  CAS  Google Scholar 

  96. Hegedüs A, Erdei S, Horváth G, Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093

    Article  PubMed  Google Scholar 

  97. Aibibu NA, Liu YG, Zeng GM, Wang X, Chen BB, Song HX, Xu L (2010) Cadmium accumulation in Vetiveria zizanioides and its effect on growth, physiological and biochemical characters. Bioresour Technol 101:6297–6303

    Article  CAS  PubMed  Google Scholar 

  98. Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54:1–6

    Article  Google Scholar 

  99. Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172:74–83

    Article  CAS  PubMed  Google Scholar 

  100. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Rai AK (2015) Silicon mediated alleviation of Cr (VI) toxicity in wheat seedlings as evidenced by chlorophyll fluorescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol Environ Safe 113:133–144

    Article  CAS  Google Scholar 

  101. Ahsan M, Valipour M, Nawaz F, Raheel M, Abbas HT, Sajid M, Manan A, Kanwal S, Mahmoud EA, Casini R, Elansary HO, Radicetti E, Zulfiqar H (2023) Evaluation of silicon supplementation for drought stress under water-deficit conditions: An application of sustainable agriculture. Agron 13:599. https://doi.org/10.3390/agronomy13020599

    Article  CAS  Google Scholar 

  102. Kalal PR, Tomar RS, Jajoo A (2022) SiO2 nanopriming protects PS I and PSII complexes in wheat under drought stress. Plant Nano Biol 2:100019

  103. Silva ON, Lobato AKS, Avila FW, Costa RCL, Oliveira Neto CF, Santos Filho BG, Martins Filho AP, Lemos RP, Pinho JM, Medeiros MBCL, Cardos MS, Andrade IP (2012) Silicon-induced increase in chlorophyll is modulated by leaf water potential in two water-deficient tomato cultivars. Plant, Soil and Environ 58:481–486

    Article  CAS  Google Scholar 

  104. Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  PubMed  Google Scholar 

  105. Anjum NA, Umar S, Iqbal M (2014) Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants implications for phytoremediation. Environ Sci Pollut Res 21:10286–10293

    Article  CAS  Google Scholar 

  106. Sidhu GP, Singh HP, Batish DR, Kohli RK (2017) Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol Environ Saf 135:209–215

    Article  CAS  PubMed  Google Scholar 

  107. Srivastava RK, Pandey P, Rajpoot R, Rani A, Gautam A, Dubey R (2015) Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma 252:959–975

    Article  CAS  PubMed  Google Scholar 

  108. Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, Sun Z, Zhou L, Zeng X (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) under cadmium stress. Environ Sci Pollut Res 22:9999–10008

    Article  CAS  Google Scholar 

  109. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  110. Zhang F, Zhang H, Wang G, Xu L, Shen Z (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76–84

    Article  CAS  PubMed  Google Scholar 

  111. Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12

    Article  CAS  PubMed  Google Scholar 

  112. Wang YL, Wei MY, Chen SJ (2008) Effects of Cr6+ on the growth and physiological and biochemical characteristics of mentha crispate schrad. J Anhui Agric Sci 36:7100–7102

    CAS  Google Scholar 

  113. Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    Article  CAS  PubMed  Google Scholar 

  114. Sun JY, Shen ZG (2007) Effects of Cd stress on photosynthetic characteristics and nutrient uptake of cabbages with different Cd-tolerance. J Appl Ecol 18:2605–2610

    CAS  Google Scholar 

  115. Abdelaal KAA, Mazrou YSA, Hafez YM (2020) Silicon Foliar Application Mitigates Salt Stress in Sweet Pepper Plants by Enhancing Water Status, Photosynthesis, Antioxidant Enzyme Activity, and Fruit Yield. Plants 9:733. https://doi.org/10.3390/plants9060733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pereira TS, Pereira TS, de Carvalho Souza CL, Lima EJ, Batista BL, da Silva Lobato AK (20118) Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants. Physiol Mol Biol Plant 24(1):99–114

  117. Marschner H (1995) Mineral Nutrition of Higher Plants. Academic 2:299–312

    Google Scholar 

  118. Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  119. Zhou XM, Zhao P, Wang W, Zou J, Cheng TH, Peng XB, Sun MX (2015) A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues. DNA Res 22:245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Baek SA, Han T, Ahn SK, Kang H, Cho MR, Lee SC, Im KH (2012) Effects of heavy metals on plant growths and pigment contents in Arabidopsis thaliana. Plant Pathol J 28:446–452

    Article  CAS  Google Scholar 

  121. Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui MS, Grotewold, (2014) Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta 240:931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sut S, Malagoli M, Dall’Acqua S, (2022) Foliar Application of silicon in Vitis vinifera: Targeted metabolomics analysis as a tool to investigate the chemical variations in berries of four grapevine cultivars. Plants 11:2998. https://doi.org/10.3390/plants11212998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xiangnan X, Guoyuan Z, Yanmei L, Yanxin S, Fulai L (2023) Silicon application improves strawberry plant antioxidation ability and fruit nutrition under both full and deficit irrigation. Scientia Hort 309:111684. https://doi.org/10.1016/j.scienta.2022.111684. (ISSN 0304-4238)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the research group of Dr. Muhammad Arfan (late) for providing state-of-the-art facilities, research settings, glassware, and required chemicals in the Plant Physiology Laboratory, Department of Botany, University of Agriculture, Faisalabad.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

AJ carried out the research work and drafted the original manuscript as part of her master’s thesis; GAN designed the experiment, performed statistical analysis of data, figures, and tables, and revised the manuscript; SY and AAM supervised the manuscript and critically reviewed its technical parameters; TA and HS collected and interpreted the data.

Corresponding author

Correspondence to Ghulam Abbas Narejo.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Novelty Statement

This study unveils the novel potential of foliar-applied Si in ameliorating Cd toxicity in Raya genotypes, bridging a critical gap in sustainable crop management.

Highlights

i Demonstrates the effectiveness of Si in mitigating Cd-induced stress in Raya crops.

ii Provides novel insights into the physiological and biochemical responses of Raya genotypes to heavy metal toxicity.

iii Offers a sustainable strategy for enhancing crop resilience and productivity in contaminated environments.

iv Explores the synergistic interactions between Si application, Cd stress, and genetic variability.

v Signifies the relevance of our findings for sustainable agriculture and environmental protection.

Aqsa Jabeen and Ghulam Abbas Narejo should be considered the joint first author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabeen, A., Narejo, G.A., Mirbahar, A.A. et al. Effect of foliar-applied Si in alleviating cadmium toxicity to different Raya (Brassica Junceae L.) genotypes. Silicon (2024). https://doi.org/10.1007/s12633-024-02949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02949-2

Keywords

Navigation