Skip to main content

Advertisement

Log in

Load Bearing, Time Dependent, Thermal and Flame Retardant Behavior of Peanut Husk Derived Si3N4 Basalt Fibre-Reinforced Polyester Composite

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study investigates the effect of adding peanut husk-derived Si3N4 on load bearing, time dependent and thermal properties of basalt fiber-reinforced polyester composites. The fine Si3N4 particles are synthesized via thermo-chemical process and the composites are meticulously prepared using the hand layup method. The composites undergo various characterization methods following ASTM standards. According to the results, the composite, RBS2 produced an improved tensile, flexural and impact values of 131 MPa, 177 MPa and 3.84 J respectively whereas the composite RBS3 produced an improved wear resistance, reduced creep strain, enhanced flame retardance and high thermal stability. It demonstrates a specific wear rate of 0.009 mm3/Nm, coefficient of friction of 0.31 and a low creep strain of 0.0086 mm at 10000 s. It also exhibits a notably high initial decomposition temperature of 410 °C and a lower flame propagation speed of 6.72 mm/min. In terms of fatigue, RBS2 performs exceptionally well, with high values at 25%, 50%, and 75% of its ultimate tensile strength. However, RBS3 experiences a slight reduction in fatigue due to localized stress concentrations. These findings provide a comprehensive understanding of the composite's suitability for diverse engineering applications, where a balance between wear resistance, fatigue strength, creep resistance, and thermal and flame stability is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data in manuscript.

References

  1. Soori M (2023) Advanced composite materials and structures. J Mater Eng Struct 2023

  2. Park HE (2023) Polymer Composites: Materials and Processes for Challenging Applications. Processes 11(4):1045

    Article  Google Scholar 

  3. Singh T, Singh V, Ranakoti L, Kumar S (2023) Polym Testing 117:107873

    Article  CAS  Google Scholar 

  4. Chichane A, Boujmal R, El Barkany A (2023) Materials Today: Proceedings 72:3471–3479

    Google Scholar 

  5. Al-Rousan ET, Khalid HR, Rahman MK (2023) Developments in the Built Environment, 100155

  6. Akhil UV, Radhika N, Saleh B, Aravind Krishna S, Noble N, Rajeshkumar L (2023) Polymer Composites

  7. Chen Z, Aziz T, Sun H, Ullah A, Ali A, Cheng L, ... Khan FU (2023) J Polym Environ 31(6):2273–2284

  8. Kumar P, Maiti TK, Maurya AK, Adwani P (2023) Polymer Composites

  9. Kim SH, Lee JH, Kim JW, Lee SY, Park SJ (2022) Advanced Fiber Materials 4(6):1414–1433

    Article  CAS  Google Scholar 

  10. Sharma RP, Sharma A, Jeganmohan S, Kumar M, Kumar A (2023) Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089231170999

  11. Karthikeyan P, Prabhu L, Bhuvaneswari B, Yokesvaran K, Jerin A, Saravanan R, ... Sharma S (2023) Adsorption Science & Technology 2023

  12. Arul Jeya Kumar A, Prakash M, Lakshmankumar A, Haswanth K (2022). Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 236(2), 250-258

  13. Govindan P, Arul Jeya Kumar A, Lakshmankumar A (2022) Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 236(5), 1053-1066

  14. Kumar IA, Kumar A, Srinivasan V, Raffi NM (2018) J Adv Microsc Res 13(1):65–71

    Article  CAS  Google Scholar 

  15. Arul Jeya Kumar A, Srinivasan V (2018) Advances in Polymer Technology 37(3):898–905

  16. Dai YM, Chen KT, Wang YJ, Chen CC (2014) International Journal of Chemical Engineering and Applications 5(3):276

    Article  CAS  Google Scholar 

  17. Sivakumar A, Vinith KK, Savadamuthu L, Sathiamurthi P (2023) SILICON 15(8):3507–3514

    Article  CAS  Google Scholar 

  18. Vijayaraj S, Vijayarajan K (2023) Biomass Conversion and Biorefinery 1–11

  19. Chumha N, Engsuwan J, Kaowphong S, Klinbumrung A, Chaopanich P, Sirirak R (2023) Materials Letters 135299

  20. Jayabalakrishnan D, K B (2023) Biomass Conversion and Biorefinery 1–9

  21. Saravanan KG, Kaliappan S, Natrayan L, Patil PP (2023) Biomass Conversion and Biorefinery 1–13

  22. Bijlwan PP, Prasad L, Sharma A, Kumar S (2023) J Appl Polym Sci 140(30):e54106

    Article  CAS  Google Scholar 

  23. Manoj E, Selvakumar G, Ram Prakash S, Jacob A (2023) Biomass Conversion and Biorefinery 1–10

  24. Kumar KS, Reddy AC (2019) International Journal of Engineering and Advanced Technology 8(6):3951–3955

    Article  Google Scholar 

  25. Li D, Yu Q, Li X, Li J, Liu R, Wang Y, Wan F (2023) J Eur Ceram Soc 43(16):7381–7389

    Article  CAS  Google Scholar 

  26. Chandrashekhar KG, Laxmaiah G, P RK, Ramesh B (2023) Biomass Conversion and Biorefinery 1–9

  27. Liu Y, Zhang L, Nie H, Sheng H, Li H (2022) ACS Appl Mater Interfaces 14(50):56203–56212

    Article  CAS  PubMed  Google Scholar 

  28. Li B, Liu M, Kang A, Zhang Y, Zheng Z (2023) Effect of Basalt Fiber Diameter on the Properties of Asphalt Mastic and Asphalt Mixture. Materials 16(20):6711

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chandrashekhar KG, Laxmaiah G, P RK, Ramesh B (2023) Load-bearing characteristics of a hybird Si3N4-epoxy composite. Biomass Conversion and Biorefinery 1–9

  30. Chen C, Zhang L, Huang X, Lu X (2023) Effect of Si3N4 nanowires doping on microstructure and properties of Sn58Bi solder for Cu bonding. Soldering & Surface Mount Technology

  31. Taghipoor H, Fereidoon A, Ghasemi-Ghalebahman A, Mirzaei J (2023) Polym Bull 80(7):7663–7685. https://doi.org/10.1007/s00289-022-04420-x

    Article  CAS  Google Scholar 

  32. Vinayakumar R, Ramakrishna H (2023) Tuijin Jishu/Journal of Propulsion Technology 44(3):3550–3560. https://doi.org/10.52783/tjjpt.v44.i3.2066

  33. Petousis M, Michailidis N, Papadakis VM, Korlos A, Mountakis N, Argyros A, ... Vidakis N (2023) Nanomaterials 13(10):1588. https://doi.org/10.3390/nano13101588

  34. Albahkali T, Fouly A, Alnaser IA, Elsheniti MB, Rezk A, Abdo HS (2023) Polymers 15(19):3880. https://doi.org/10.3390/polym15193880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong Y, Zhu Y, Du Y, Che Z, Qu G, Li Q, ... Ma Q (2023) Materials 16(18):6082. https://doi.org/10.3390/ma16186082

  36. Mazumder S, Metselaar HSC, Sukiman NL, Zulkifli NWM (2023) Ceram Int 49(8):12787–12795

    Article  CAS  Google Scholar 

  37. Huang Y, Cai M, He C, Si C, Li L, Fan X, Zhu M (2023) Tribol Int 183:108390

    Article  CAS  Google Scholar 

  38. Murugan MA, Jayaseelan V, Jayabalakrishnan D et al (2020) SILICON 12:1847–1856. https://doi.org/10.1007/s12633-019-00297-0

    Article  CAS  Google Scholar 

  39. Iscen A, Forero-Martinez NC, Valsson O, Kremer K (2023) Macromolecules 56(9):3272–3285

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ornaghi HL Jr, Monticeli FM, Neves RM, Zattera AJ, Cioffi MOH, Voorwald HJC (2020) Composites Communications 19:210–219

    Article  Google Scholar 

  41. Sokairge H, Elgabbas F, Rashad A, Elshafie H (2020) Long-term creep behavior of basalt fiber reinforced polymer bars. Constr Build Mater 260:120437

    Article  CAS  Google Scholar 

  42. Wu Z, Wang X, Liu J, Chen X (2020). Mineral fibres: basalt. In Handbook of Natural Fibres (pp. 433–502). Woodhead Publishing

  43. Dwivedi SP, Selvaprakash S, Sharma S, Kumari S, Saxena KK, Goyal R, ... Djavanroodi F (2023) Mechanics of Advanced Materials and Structures 1–11

  44. Fayomi J, Popoola API, Oladijo OP, Popoola OM, Fayomi OSI (2019) J Alloy Compd 790:610–615

    Article  CAS  Google Scholar 

  45. Poornima C, Uthamballi Shivanna M, Sathyanarayana S (2023) Polym Compos 44(1):57–68

    Article  CAS  Google Scholar 

  46. Apicella A, Migliaresi C, Nicolais L, Iaccarino L, Roccotelli S (1983) Composites 14(4):387–392

    Article  CAS  Google Scholar 

  47. Kumar MP, Vinay KM (2023) Development and Mechanical Properties Evaluation of Basalt-Glass Hybrid Composites

  48. Arya RK, Kumar R, Telang, Silicon 15, 3987–4001 (2023). https://doi.org/10.1007/s12633-023-02309-6

  49. Funaki K, Morisada Y, Fukasawa T, Abe Y, Fujii H (2023) Welding International 1–8

  50. Ni ZH, Li FS, Wang H (2023) Simplification of the combustion mechanism of Jatropha biodiesel surrogate fuel and reaction path analysis. Energy 282:128859

    Article  CAS  Google Scholar 

  51. Kanaginahal GM, Tambrallimath V, Murthy M, Mahale RS, Patil A, Pawar SY, Kakkamari PP (2023) Journal of The Institution of Engineers (India): Series D 1–13

  52. Biesuz M, Zera E, Tomasi M, Jana P, Ersen O, Baaziz W, ... Sorarù GD (2020) Applied Materials Today 20:100648

  53. Cheng L, Wang J, Qiu S, Wang J, Zhou Y, Han L (2021) … & Ma, C. J Colloid Interface Sci 603:844–855

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Wang S, Zhong J, Gu Y, Li G, Cui J (2020) Polym Compos 41(10):4181–4191

    Article  CAS  Google Scholar 

  55. Mohan Das Gandhi AG, Sivaraman R, Nagabhooshanam N, Verma R (2023) Polymer Composites 44(9), 5647–5655

  56. Gunasekar D, Thangadurai KR, Lenin K, Kumar DR, Jeyaprakash N (2023) Silicon 1–18

  57. Moradi A, Szewczyk PK, Stachewicz U (2023) Bridging a Gap in Thermal Conductivity and Heat Transfer in Hybrid Fibers and Yarns via Polyimide and Silicon Nitride Composites. Small 2305104

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.R.Chinnusamy & K.Muralidharan – Research, writing and testing.

V L Raja & Ambujam Kathan – Material arrangement and writing.

Corresponding author

Correspondence to T. R. Chinnusamy.

Ethics declarations

Ethical Approval

NA.

Consent to Participate

Yes.

Consent to Publish

Yes.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnusamy, T.R., Muralidharan, K., Raja, V.L. et al. Load Bearing, Time Dependent, Thermal and Flame Retardant Behavior of Peanut Husk Derived Si3N4 Basalt Fibre-Reinforced Polyester Composite. Silicon (2024). https://doi.org/10.1007/s12633-024-02866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02866-4

Keywords

Navigation