Skip to main content

Advertisement

Log in

Silica-Based Catalysts for Biodiesel Production: A Brief Review

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Biodiesel, an environmentally friendly fuel, has been developed as a renewable fuel. It is accomplished through either a transesterification reaction with a base catalyst or a two-step reaction with an acid catalyst followed by a transesterification reaction with a base catalyst. A two-step reaction is performed on oil involving high levels of free fatty acids (FFA), such as used cooking oil or others. Silica is a material that has the potential to be developed as a heterogeneous catalyst based on its acidic and basic properties in biodiesel production. This review discusses the use of silica material and its modification as a catalyst to increase its acidity and/or basicity, which can increase its catalytic activity to produce biodiesel. Modification of silica as an acid catalyst, for example, in the sulfation process using sulfuric acid solution, has led to an increase in silica’s acidity and a half-reduction in the FFA content of used cooking oil. The silica catalyst in the esterification and/or transesterification reactions shows good conversion of biodiesel. Loading base catalyst materials such as CaO, MgO, and KF onto silica has resulted in close to 100% conversion of an oil such as used cooking oil, corn oil, or Jatropha oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated during this review is included in this published article.

References

  1. Gerpen JV (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107. https://doi.org/10.1016/j.fuproc.2004.11.005

    Article  CAS  Google Scholar 

  2. Aljaafari A, Fattah IMR, Jahirul MI, Gu Y, Mahlia TMI, Islam MA, Islam MS (2022) Biodiesel emissions: A state-of-the-art review on health and environmental impacts. Energies 15:6854. https://doi.org/10.3390/en15186854

    Article  CAS  Google Scholar 

  3. Musa IA (2016) The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet 25(1):21–31. https://doi.org/10.1016/j.ejpe.2015.06.007

    Article  Google Scholar 

  4. Efavi JK, Kanbogtah D, Apalangya V, Nyankson E, Tiburu EK, Dodoo-Arhin D, Onwona-Agyeman B, Yaya A (2018) The effect of NaOH catalyst concentration and extraction time on the yield and properties of Citrullus vulgaris seed oil as a potential biodiesel feed stock. S Afr J Chem Eng 25:98–102. https://doi.org/10.1016/j.sajce.2018.03.002

    Article  Google Scholar 

  5. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15. https://doi.org/10.1016/s0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  6. Lamba BY, Chen WH (2022) Experimental investigation of biodiesel blends with high-speed diesel-a comprehensive study. Energies 15:7878. https://doi.org/10.3390/en15217878

    Article  CAS  Google Scholar 

  7. Kiss AA, Dimian AC, Rothenberg G (2008) Biodiesel by catalytic reactive distillation powered by metal oxides. Energ Fuels 22:598–604. https://doi.org/10.1021/ef700265y

    Article  CAS  Google Scholar 

  8. Brahma S, Nath B, Basumatary B, Das B, Saikia P, Patir K, Basumatary S (2022) Biodiesel production from mixed oils: a sustainable approach towards industrial biofuel production. Chem Eng J Adv 10:100284. https://doi.org/10.1016/j.cejq.2022.100284

    Article  CAS  Google Scholar 

  9. Wang YT, Fang Z, Zhang F (2019) Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst. Catal Today 319:172–181. https://doi.org/10.1016/j.cattod.2018.06.041

    Article  CAS  Google Scholar 

  10. Rozina, Ahmad M, Elnaggar AY, Teong LK, Sultana S, Zafar M, Munir M, Hussein EE, Abidin SZU (2022) Sustainable and eco-friendly synthesis of biodiesel from novel and non-edible seed oil of Monotheca buxifolia using green nanocatalyst of calcium oxide. Energy Convers Manag 13:100142. https://doi.org/10.1016/j.ecmx.2021.100142

    Article  CAS  Google Scholar 

  11. Liu X, He H, Wang Y, Zhu S, Piao X (2008) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87:216–221. https://doi.org/10.1016/j.fuel.2007.04.013

    Article  CAS  Google Scholar 

  12. Du L, Li Z, Ding S, Chen C, Qu S, Yi W, Lu J, Ding J (2019) Synthesis and characterization of carbon-based MgO catalysts for biodiesel production from castor oil. Fuel 258:116122. https://doi.org/10.1016/j.fuel.2019.116122

    Article  CAS  Google Scholar 

  13. Ganesan D, Rajendran A, Thangavelu V (2009) An overview on the recent advances in the transesterification of vegetable oils for biodiesel production using chemical and biocatalysts. Rev Environ Sci Biotechnol 8:367–394. https://doi.org/10.1007/s11157-009-9176-9

    Article  CAS  Google Scholar 

  14. Zahan KA, Kano M (2018) Biodiesel production from palm oil, its by-products, and mill effluent: a review. Energies 11(8):2132. https://doi.org/10.3390/en11082132

    Article  CAS  Google Scholar 

  15. Foteinis S, Chatzisymeon E, Litinas A, Tsoutsos T (2020). Used-cooking-oil biodiesel: life cycle assessment and comparison with first-and third-generation biofuel 153:588–600. https://doi.org/10.1016/j.renene.2020.02.022

    Article  CAS  Google Scholar 

  16. Boulifi NE, Bouaid A, Martinez M, Aracil J (2010) Process optimization for biodiesel production from corn oil and its oxidative stability. Int J Chem Eng 2010:518070. https://doi.org/10.1155/2010/518070

    Article  CAS  Google Scholar 

  17. Souza RD, Vats T, Chattree A, Siril PF (2018) Effect of metal oxides on the catalytic activities of sulfonated graphene oxide for the esterification of oleic acid and conversion of waste cooking oil to biodiesel. Catal Letters 148:2848–2855. https://doi.org/10.1007/s10562-018-2472-7

    Article  CAS  Google Scholar 

  18. Li T, Cheng J, Huang R, Zhou J, Cen K (2015) Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst. Bioresour Technol 197:289–294. https://doi.org/10.1016/j.biortech.2015.08.115

    Article  CAS  PubMed  Google Scholar 

  19. Adhikesavan C, Ganesh D, Augustin VC (2022) Effect of quality of waste cooking oil on the properties of biodiesel, engine performance and emissions. Cleaner Chemical Engineering 4:100070. https://doi.org/10.1016/j.clce.2022.100070

    Article  Google Scholar 

  20. Chhetri AB, Watts KC, Islam MR (2008) Waste cooking oil as an alternate feedstock for biodiesel production. Energies 1(1):3–18. https://doi.org/10.3390/en1010003

    Article  CAS  Google Scholar 

  21. Suzihaque MUH, Alwi H, Ibrahim UK, Abdullah AS, Haron N (2022) Biodiesel production from waste cooking oil: a brief review. Mater Today 63:S490–S495. https://doi.org/10.1016/j.matpr.2022.04.527

    Article  CAS  Google Scholar 

  22. Degfie TA, Mamo TT, Mekonnen YS (2019) Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst. Sci Rep 9:18982. https://doi.org/10.1038/s41598-019-55403-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thoai DN, Hang PTL, Lan DT (2019) Pre-treatment of waste cooking oil with high free fatty acids content for biodiesel production: An optimization study via response surface methodology. Vietnam J Chem 57(5):568–573. https://doi.org/10.1002/vjch.201900072

    Article  CAS  Google Scholar 

  24. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363. https://doi.org/10.1021/ie049157g

    Article  CAS  Google Scholar 

  25. Chanakaewsomboon I, Tongurai C, Photaworn S, Kungsanant S, Nikhom R (2020) Investigation of saponification mechanisms in biodiesel production: microscopic visualization of the effects of FFA, water and the amount of alkaline catalyst. J Environ Chem Eng 8(2):103538. https://doi.org/10.1016/j.jece.2019.103538

    Article  CAS  Google Scholar 

  26. Carlucci C (2022) An overview on the production of biodiesel enabled by continuous flow methodologies. Catalysts 12(7):717. https://doi.org/10.3390/catal12070717

    Article  CAS  Google Scholar 

  27. Peters MA, Alves CT, Wang J, Onwudili JA (2022) Subcritical water hydrolysis of fresh and waste cooking oils to fatty acids followed by esterification to fatty acid methyl esters: detailed characterization of feedstocks and products. ACS Omega 7(50):46870–46883. https://doi.org/10.1021/acsomega.2c05972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malins K, Brinks J, Kampars V, Malina I (2016) Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Appl Catal A: Gen 519(5):99–106. https://doi.org/10.1016/j.apcata.2016.03.020

    Article  CAS  Google Scholar 

  29. Lou S, Jia L, Guo X, Wu P, Gao L, Wang J (2015) Preparation of diethylene glycol monomethyl ether monolaurate catalyzed by active carbon supported KF/CaO. Springerplus 4:1–11. https://doi.org/10.1186/s40064-015-1486-5

    Article  CAS  Google Scholar 

  30. Wijaya K, Nadia A, Dinana A, Pratiwi AF, Tikoalu AD (2021a) Wibowo AC (2021) Catalytic hydrocracking of fresh and waste frying oil over Ni- and Mo-Based catalysts supported on sulfated silica for biogasoline production. Catalysts 11:1150. https://doi.org/10.3390/catal11101150

    Article  CAS  Google Scholar 

  31. Sivagurulingam APA, Sivanandi P, Pandian S, Arumugamurthi SS, Sircar S (2019) Optimization and kinetic studies on biodiesel production from microalgae (Euglena sanguinea) using calcium methoxide as catalyst. Energ Source Part A 41(12):1497–1507. https://doi.org/10.1080/15567036.2018.1549124

    Article  CAS  Google Scholar 

  32. Booramurthy VK, Kasimani R, Pandian S, Ragunathan B (2020) Nano-sulfated zirconia catalyzed biodiesel production from tan- nery waste sheep fat. Environ Sci Pollut Res 26:20598–20605. https://doi.org/10.1007/s11356-020-07984-1

    Article  CAS  Google Scholar 

  33. Eswaramoorthi Y, Pandian S, Sahadevan R (2022) Kinetic stud- ies on the extraction of oil from a new feedstock (Chukrasia tabularis L. seed) for biodiesel production using a heterogene- ous catalyst. Environ Sci Pollut Res 30:14565–14579. https://doi.org/10.1007/s11356-022-23163-w

    Article  CAS  Google Scholar 

  34. Ore MS, Wijaya K, Trisunaryanti W, Saputri WD, Heraldy E, Yuwana MW, Hariani PL, Budiman A, Sudiono S (2020) The synthesis of SO4/ZrO2 and Zr/CaO catalysts via hydrothermal treatment and their application for conversion of low-grade coconut oil into biodiesel. J Environ Chem Eng 8:104205. https://doi.org/10.1016/j.jece.2020.104205

    Article  CAS  Google Scholar 

  35. Aneu A, Wijaya K, Syoufian A (2020) Silica-based solid acid catalyst with different concentration of H2SO4 and calcination temperature: preparation and characterization. Silicon. https://doi.org/10.1007/s12633-020-00741-6

  36. Otadi M, Shahraki A, Goharrokhi M, Bandarchian F (2011) Reduction of free fatty acids of waste oil by acid-catalyzed esterification. Procedia Eng 18:168–174. https://doi.org/10.1016/j.pro-eng.2011.11.027

    Article  CAS  Google Scholar 

  37. Nisar S, Hanif MA, Rashid U, Hanif A, Akhtar MN, Ngamcharussrivichai C (2021) Trends in widely used catalysts for fatty acid methyl ester (FAME) production: a review. Catalysts 11(9):1085. https://doi.org/10.3390/catal11091085

    Article  CAS  Google Scholar 

  38. Somwanshi SB, Somvanshi SB, Kharat PB (2020a) nanocatalyst: a brief review on synthesis to applications. J Phys: Conf Ser 1644:012046. https://doi.org/10.1088/1742-6596/1644/1/012046

    Article  Google Scholar 

  39. Pratika RA, Wijaya K, Trisunaryanti W (2021) Hydrothermal Treatment of SO4/TiO2 and TiO2/CaO as heterogeneous catalysts for the conversion of jatropha oil into biodiesel. J Environ Chem Eng 9:106547. https://doi.org/10.1016/j.jece.2021.106547

    Article  CAS  Google Scholar 

  40. Akkari R, Ghorbel A, Essayem N, Figueras F (2005) Mesoporous silica supported sulfated zirconia prepared by a sol-gel process. J Sol-Gel Sci Technol 33:121–125. https://doi.org/10.1007/s10971-005-6712-0

    Article  CAS  Google Scholar 

  41. Zhang J, Zhang B, Zhou J, Li J, Shi C, Huang T, Wang Z, Tang J (2011) H2SO4-SiO2: Highly efficient and reusable catalyst for per-O-acetylation of carbohydrates under solvent-free condition. J Carbohydr Chem 30:165–177. https://doi.org/10.1080/07328303.2011.621042

    Article  CAS  Google Scholar 

  42. Zhang C, Zhang J, Zhao Y, Sun J, Wu G (2016) Study on the preparation and catalytic activities of SO 2- promoted metl oxide solid superacid catalysts for model oil desulfurization. Catal Lett 146:1256–1263. https://doi.org/10.1007/s10562-016-1744-3

    Article  CAS  Google Scholar 

  43. Sekewael SJ, Pratika RA, Hauli L, Amin AK, Utami M, Wijaya K (2022) Recent progress on sulfated nanozirconia as a solid acid catalyst in the hydrocracking reaction. Catalysts 12(2):191. https://doi.org/10.3390/catal12020191

    Article  CAS  Google Scholar 

  44. Islam A, Taufiq-Yap YH, Chu CM, Chan ES, Ravindra P (2013) Studies on design of heterogeneous catalyst for biodiesel production. Process Saf Environ Prot 91:131–144. https://doi.org/10.1016/j.psep.2012.01.002

    Article  CAS  Google Scholar 

  45. Mazaheri H, Ong HC, Amini Z, Masjuki HH, Mofijur M, Su CH, Badruddin IA, Khan TMY (2021) An overview of biodiesel production via calcium oxide-based catalysts: current state and perspective. Energies 14(13):3950. https://doi.org/10.3390/en14133950

    Article  CAS  Google Scholar 

  46. Sistani A, Saghatoleslaml N, Nayebzadeh H (2018) Influence of calcination temperature on the activity of mesoporous CaO/TiO2-ZrO2 catalyst in the esterification reactions. J Nanostructure Chem 8:321–331. https://doi.org/10.1007/s40097-018-0276-3

    Article  CAS  Google Scholar 

  47. Gardy J, Hassanpour A (2016) Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. App Catal A: Gen 527:81–94. https://doi.org/10.1016/j.apcata.2016.08.031

    Article  CAS  Google Scholar 

  48. Afsharizadeh M, Mohsennia M (2019) Catalytic Synthesis of biodiesel from waste cooking oil and corn oil over zirconia-based metal oxide nanocatalysts. React Kinet Mech Catal 128:443–459. https://doi.org/10.1007/s11144-019-01622-9

    Article  CAS  Google Scholar 

  49. Chen C, Cai L, Shangguan X, Li L, Hong Y, Wu G (2018) Heterogeneous and efficient transesterification of jatropha curcas l. seed to oil to produce biodiesel catalyzed by nano-sized SO42-/TiO2. R Soc Open Sci 5:181331. https://doi.org/10.1098/rsos.181331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dabbawalla AA, Alhassan SM, Mishra DK, Jegal J, Hwang JS (2018) Solvent free cyclodehydration of sorbitol to isosorbide over mesoporous sulfated titania with enhanced catalytic performance. Mol Catal 454:77–86. https://doi.org/10.1016/j.mcat.2018.05.009

    Article  CAS  Google Scholar 

  51. Gardy J, Osatiashtiani A, Cespede O, Hassanpour A, Lai X, Lee AF, Wilson K, Rehan M (2018) A Magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl Catal B: Environ 234:268–278. https://doi.org/10.1016/j.apcatb.2018.04.046

    Article  CAS  Google Scholar 

  52. Lam MK, Lee KL (2011) Mixed methanol-ethanol technology to produce greener biodiesel from waste cooking oil: a breakthrough for SO42-/SnO2-SiO2 Catalyst. Fuel Processing Technol 92:1693–1645. https://doi.org/10.1016/j.fuproc.2011.04.012

    Article  CAS  Google Scholar 

  53. Murugan C, Bajaj CH (2011a) Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using Kf/Al2O3 as an efficient solid base catalyst. Fuel Process Technol 92:77–82. https://doi.org/10.1016/j.fuproc.2010.08.023

    Article  CAS  Google Scholar 

  54. Pal N, Lee JH, Cho EB (2020) Recent trends on morphology- controlled synthesis and application of mesoporous silica nano-particles. Nanomaterials 10(11):2122. https://doi.org/10.3390/nano10112122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adam F, Appaturi JN, Iqbal A (2012) The utilization of rice husk silica as a catalyst: review and recent progress. Catal Today 190:2–14. https://doi.org/10.1016/j.cattod.2012.04.056

    Article  CAS  Google Scholar 

  56. Munasir SA, Triwikantoro ZM, Darminto (2013) Synthesis of silica nanopowder produced from Indonesian natural sand via alkalifussion route. AIP Conf Proc 1555:28–31. https://doi.org/10.1063/1.4820986

    Article  CAS  Google Scholar 

  57. Lai CY (2013) Mesoporous silica nanomaterials applications in catalysis. J Thermodyn Catal 5:1–3. https://doi.org/10.4172/2157-7544.1000e124

    Article  CAS  Google Scholar 

  58. Azmy E, Al-kholy MRZ, Al-Thobity AM, Gad M, Helal MA (2022) Comparative effect of incorporation of ZrO2, TiO2, and SiO2 nanoparticles on the strength and surface properties of PMMA denture base material: an in vitro study. Int J Biomaterials 2022:5856545. https://doi.org/10.1155/2022/5856545

    Article  CAS  Google Scholar 

  59. Chen N, Wang N, Ren Y, Tominaga H, Qian EW (2017) Effect of surface modification with silica on the structure and activity of Pt/ZSM-22@SiO2 catalysts in hydrodeoxygenation of methyl palmitate. J Catal 345:124–134. https://doi.org/10.1016/j.jcat.2016.09.005

    Article  CAS  Google Scholar 

  60. Wijaya K, Malau MLL, Utami M, Mulijani S, Patah A, Wibowo AC, Chandrasekaran M, Rajabathar JR, Al-Lohedan HA (2021b) Synthesis, characterization and catalysis of sulfated silica and nickel modified silica catalyst for Diethyl Ether (DEE) production from ethanol towards renewable energy applications. Catalysts 11:1511. https://doi.org/10.3390/catal11121511

    Article  CAS  Google Scholar 

  61. Nadia A, Wijaya K, Falah II, Sudiono S, Budiman A (2022) Self-regenation of monodisperse hierarchical porous NiMo/ Silica catalyst induced by NaHCO3 for biofuel production. Waste Biomass Valor 13:2335–2347. https://doi.org/10.1007/s12649-021-01634-4

    Article  CAS  Google Scholar 

  62. Mirzaei M, Zarch MB, Darroudi M, Syaadi K, Keshavarz ST, Sayyadi J, Fallah A, Maleki H (2020) Silica mesoporous structure: effective nanocarriers in drug delivery and nanocatalysts. Appl Sci 10:7533. https://doi.org/10.3390/app102217533

    Article  CAS  Google Scholar 

  63. Rizzi F, Castaldo R, Latronico T, Lasala P, Gentile G, Lavorgna M, Striccoli M, Agostiano A, Comparelli R, Depalo N, Curri ML, Fanizza E (2021) High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: insight on the size and porosity control mechanism. Molecules 26(14):4247. https://doi.org/10.3390/molecules26144247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alfawaz A, Alsalme A, Alkathiri A, Alsieleh A (2022) Surface functionalization of mesoporous silica nanoparticles with Bron- sted acids as a catalyst for esterification reaction. J King Saud Univ Sci 34(5):102106. https://doi.org/10.1016/jksus.2022.102106

    Article  Google Scholar 

  65. Fu B, Gao L, Niu L, Wei R, Xiao G (2009) Biodiesel from waste cooking oil via heterogeneous superacid catalyst SO42-/ZrO2. Energy Fuels 23:569–572. https://doi.org/10.1021/ef800751z

    Article  CAS  Google Scholar 

  66. Pisal AA, Rao AV (2016) Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. J Porous Mater 23:1547–1556. https://doi.org/10.1007/s10934-016-0215-y

    Article  CAS  Google Scholar 

  67. Thitsartarn W, Kawi S (2011) Transesterification of oil by sulfated zr-supported mesoporous silica. Ind Eng Chem Res 50:7857–7865. https://doi.org/10.1021/ie1022817

    Article  CAS  Google Scholar 

  68. Ge Y, Jia Z, Gao C, Gao P, Zhao L, Zhao Y (2014) Synthesis of mesoporous silica-alumina materials via urea-templated sol-gel route and their catalytic performance for THF Polymerization. Russ J Phys Chem A 88:1650–1655. https://doi.org/10.1134/S0036024414100355

    Article  CAS  Google Scholar 

  69. Khoeini M, Najafi A, Rastegar H, Amani M (2019) Improvement of hollow mesoporous silica nanoparticles synthesis by hard-templating method via CTAB surfactant. Ceram Int 45:12700–12707. https://doi.org/10.1016/j.ceramint.2019.03.125

    Article  CAS  Google Scholar 

  70. Jung JI, Bae JY, Bae BS (2004) Preparation and characterization of structurally stable hexagonal and cubic mesoporous silica thin films. J Sol-Gel Sci Technol 31:179–1183. https://doi.org/10.1023/B:JSST.0000047983.18386.b4

  71. Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery system. J Nanosci Nanotechnol 12:2221–2228. https://doi.org/10.1166/jnn.2012.5801

    Article  CAS  PubMed  Google Scholar 

  72. Yu X, Williams CT (2022) Recent advances in the application of mesoporous silica in heterogeneous catalysis. Catal Sci Technol 12:5765–5794. https://doi.org/10.1039/D2CY00001F

    Article  CAS  Google Scholar 

  73. Manga J, Ahmad A, Taba P, Firdaus (2019) Synthesis and modification of mesoporous silica with sulfated titanium oxide as a heterogeneous catalyst for biodiesel production from palm fatty acid distillate. J Phys Conf Ser 1341:032014. https://doi.org/10.1088/1742-6596/1341/3/032014

  74. Wangsa W, Pratika RA, Ningrum TS, Wijaya K (2022) Sulfuric acid-activated silica gel as a potential solid acid catalyst. Key Eng Mat 920:159–165. https://doi.org/10.4028/p-3y31y4

    Article  Google Scholar 

  75. Hlatshwayo XS, Ndolomingo MJ, Bingwa N, Meijboom R (2021) Molybdenum-modified mesoporous SiO2 as an efficient Lewis acid catalyst for the acetylation of alcohols. RSC Adv 11:16468–16477. https://doi.org/10.1039/D1RA02134F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zheng A, Li S, Liu SB, Deng F (2016) Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc Chem Res 49(4):655–663. https://doi.org/10.1021/acs.accounts.6b00007

    Article  CAS  PubMed  Google Scholar 

  77. Lee HJ, Kang DC, Kim EJ, Suh YH, Kim DP, Han H, Min HK (2022) Production of H2-free carbon monoxide from formic acid dehydration: the catalytic role of acid sites in sulfated zirconia. Nanomaterials 12:3036. https://doi.org/10.3390/nano12173036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin XH, Yin XJ, Liu JY, Li SFY (2017) Elucidation of structures of surface sulfate species on sulfated titania and mechanism of improved activity. App Catal B 203:731–739. https://doi.org/10.1016/j.apcatb.2016.10.068

    Article  CAS  Google Scholar 

  79. Yu F, Guo M, Wang X, Pan DH, Li RF (2013) Synthesis of well-ordered SO 2-/ZrO -SiO materials in bi-acid system. J Fuel Chem Technol 41(4):456–461. https://doi.org/10.1016/S1872-5813(13)60024-9

    Article  CAS  Google Scholar 

  80. Shinde PS, Suryawanshi PS, Patil KK, Belekar VM, Sankpal SS, Delekar SD, Jadhav SA (2021) A brief overview of recent progres in porous silica as catalyst supports. J Compos Sci 5:75. https://doi.org/10.3390/jcs5030075

    Article  CAS  Google Scholar 

  81. Fu B, Gao L, Niu L, Wei R, Xiao G (2019) Biodiesel from waste cooking oil via heterogeneous superacid catalyst SO42-/ZrO2. Energy Fuels 23:569–572. https://doi.org/10.1021/ef800751z

    Article  CAS  Google Scholar 

  82. Morrow BA, McFarlane RA, Lion M, Lavalley JC (1987) An infred study of sulfated silica. J Catal 107(1):232–239. https://doi.org/10.1016/0021-9517(8790288-0

    Article  CAS  Google Scholar 

  83. Aneu A, Wijaya K, Syoufian A (2022) Porous silica modification with sulfuric acids and potassium fluorides as catalysts for biodiesel conversion from waste cooking oils. J Porous Mater 29:1321–1335. https://doi.org/10.1007/s10934-022-01258-6

    Article  CAS  Google Scholar 

  84. Somwanshi SB, Somvanshi SB, Kharat PB (2020b) Nanocatalyst: A brief review on synthesis to applications. J Phys Conf Ser 1644. https://doi.org/10.1088/1742-6596/1644/1/012046

  85. Chong CC, Cheng YW, Bahari MB, Teh LP, Abidin SZ, Seti-abudi HD (2020) Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: A review. Int J Hydrogen Energy 46:24687–24708. https://doi.org/10.1016/j.ijhydene.2020.01.086

    Article  CAS  Google Scholar 

  86. Narayanan CM, Pandey A (2018) A. studies on biodiesel synthesis using nanosilica immobilised lipase in inverse fluidized bed bioreactors. J Adv Chem 15:6072–6086. https://doi.org/10.24297/jac.v15il.7108

    Article  CAS  Google Scholar 

  87. Saxena A, Marella TK, Singh PK, Tiwari A (2021) Indoor mass cultivation of marine diatoms for biodiesel production using induction plasma synthesized nanosilica. Bioresour Technol 332:125098. https://doi.org/10.1016/j.biortech.2021.125098

    Article  CAS  PubMed  Google Scholar 

  88. Rafiee E, Shahebrahimi S (2012) Nano silica with high surface area from rice husk as a support for 12-tungstophosphoric acid: An efficient nano catalyst in some organic reactions. Chinese J Catal 33:1326–1333. https://doi.org/10.1016/S1872-2067(11)60420-8

    Article  CAS  Google Scholar 

  89. Salahelden M, Mariod AA, Aroua MK, Rahman SMA, Saudagar MEM, Fattah IMR (2021) Current state and perspective on trans- esterification of triglycerides for biodiesel production. Catalysts 11:1121. https://doi.org/10.3390/catal11091121

    Article  CAS  Google Scholar 

  90. Barbosa SL, Rocha ACP, Nelson DL, de Freitas MS, Mestre AAPF, Klein SL, Clososki GC, Caires FJ, Flumignan DL, de Santos LK, Wentz AP, Pasa VMD, Rios RDF (2022) Catalytic transformation of triglycerides to biodiesel with SiO2-SO3H and quaternary ammonium salts in toluene or DMSO. Molecules 27:953. https://doi.org/10.3390/molecules27030953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lani NS, Ngadi N, Yahya NY, Rahman RA (2016) Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. J Clean Production 146:116–124. https://doi.org/10.1016/j.jclepro.2016.06.058

    Article  CAS  Google Scholar 

  92. Granados ML, Martin DA, Arba-Rubio AC, Mariscal R, Ojedah M, Brettes P (2009) Transesterification of Triglycerides by CaO increase of the reaction rate by biodiesel addition. Energ Fuel 23:2259–2263. https://doi.org/10.1021/ef800983m

    Article  CAS  Google Scholar 

  93. Li H, Wang Y, Ma X, Wu Z, Cui P, Lu W, Liu F, Chu H, Wang Y (2020) A novel magnetic CaO-based catalyst synthesis and characterization: enhancing the catalyst activity and stability of CaO for biodiesel production. Chem Eng J 391:123549. https://doi.org/10.1016/j.cej.2019.123549

    Article  CAS  Google Scholar 

  94. Moradi G, Mohades M, Hojabri Z (2014) Biodiesel production by CaO/SiO2 catalyst synthesized by the sol-gel process. React Kinet Mech Catal 113:169–186. https://doi.org/10.1007/s11144-014-0726-9

    Article  CAS  Google Scholar 

  95. Mierczynski P, Ciesielski R, Kedziora A, Maniukiewicz W, Shtyka O, Kubicki J, Albinska J, Maniecki TP (2015) Biodiesel Production on MgO, CaO, SrO, and BaO oxides supported on (SrO) (Al2O3) mixed oxide. Catal Lett 145:1196–1205. https://doi.org/10.1007/s10562-015-1503-x

    Article  CAS  Google Scholar 

  96. Petitjean H, Tarasov K, Delbecq F, Sautet P, Krafft JM, Bazin P, Paganini MC, Giamello E, Che M, Lauron-Pernot H, Costentin G (2010) Quantitative investigation of MgO Bronsted basicity: DFT, IR, and calorimetry study of methanol adsorption. J Phys Chem C 114(7):3008–3016. https://doi.org/10.1021/jp909354p

    Article  CAS  Google Scholar 

  97. Dias APS, Bernardo J, Felizardo P, Correia MJN (2012) Bio- diesel production by soybean oil methanolysis over SrO/MgO catalysts: the relevance of the catalyst granulometry. Fuel Process Technol 102:146–155. https://doi.org/10.1016/j.fuproc.2012.04.039

    Article  CAS  Google Scholar 

  98. Pandiangan KD, Simanjuntak W, Jamarun N, Arief S (2021) The Use of MgO/SiO2 as catalyst for transesterification of rubeer seed oil with different alcohols. J Physics: Conf Ser 1751:012100. https://doi.org/10.1088/1742-6596/1751/1/102100

    Article  CAS  Google Scholar 

  99. Tangi A, Pulidindi IN, Gedanken A (2016) SiO beads decorated with SiO nanoparticles for biodiesel production from waste cooking oil microwave irradiation. Energ Fuels 30:3155–3160. https://doi.org/10.1021/acs.energyfuels.6b00256

    Article  CAS  Google Scholar 

  100. Naor FO, Koberg M, Gedanken A (2017) Nonaqueous synthesis of SrO nanopowder and SrO/SiO2 composite and their application for biodiesel production via microwave irradiation. Renew Energ 101:493–499. https://doi.org/10.1016/j.renene.2016.09.007

    Article  CAS  Google Scholar 

  101. Gao L, Wang S, Xu W, Xiao G (2015) Biodiesel production from palm oil over monolithic KF/γ-Al2O3/honeycomb ceramic catalyst. Appl Energy 146:196–201. https://doi.org/10.1016/j.apenergy.2015.02.068

    Article  CAS  Google Scholar 

  102. Baluo J, Khalilzadeh MA, Zareyee D (2019) An efficient and reusable nano catalyst for the synthesis of benzoxanthene and chromene derivatives. Sci Rep 9:3605. https://doi.org/10.1038/s41598-019-40431-x

    Article  CAS  Google Scholar 

  103. Xu C, Liu Q (2011) Catalytic performance and mechanism of KF-loaded catalysts for biodiesel synthesis. Catal Sci Technol 1:1072–1082. https://doi.org/10.1039/C1CY00022E

    Article  CAS  Google Scholar 

  104. Xuan JA, Zheng X, Hu H (2012) Active sites of supported KF catalysts for transesterification. Catal Commun 28:124–127. https://doi.org/10.1016/j.catcom.2012.08.032

    Article  CAS  Google Scholar 

  105. Alves HJ, da Rocha AM, Monteiro MR, Moretti C, Cabrelon MD, Schwengber CA, Milinsk MC (2014) Treatment of clay with KF: new solid catalyst for biodiesel production. Appl Clay Sci 91:98–104. https://doi.org/10.1016/j.clay.2014.02.004

    Article  CAS  Google Scholar 

  106. Murugan C, Bajaj HC (2011b) Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF/Al2O3 as an efficient solid base catalyst. Fuel Process Technol 92:77–82. https://doi.org/10.1016/j.fuproc.2010.08.023

    Article  CAS  Google Scholar 

  107. Fan M, Zhang P, Ma Q (2012) Enhancement of biodiesel synthesis from soybean oil by potassium flouride modification of a calcium magnesium oxides catalyst. Bioresource Technol 104:447–450. https://doi.org/10.1016/j.biortech.2011.11.082

    Article  CAS  Google Scholar 

  108. Li Y, Jiang Y (2018) Preparation of a palygorskite supported KF/CaO catalyst and its application for biodiesel production via transesterification. RSC Adv 8(29):16013–16018. https://doi.org/10.1039/c8ra02713g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Akbar E, Binitha N, Yaakob Z, Kamarudin SK, Salimon J (2009) Preparation of Na doped SiO2 solid catalysts by the sol-gel method for the production of biodiesel from jatropha oil. Green Chem 11. https://doi.org/10.1039/B916263C

  110. Xie W, Wang H, Li H (2012) Silica-supported tin oxides as heterogeneous acid catalysts for transesterification of soybean oil with methanol. Ind Eng Chem Res 51:225–231. https://doi.org/10.1021/ie202262t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Rekognisi Tugas Akhir (RTA) Project of Universitas Gadjah Mada.

Funding

This work was supported by Rekognisi Tugas Akhir (RTA) Project of Universitas Gadjah Mada under the Contract Number: 5722/UN1.P.III/Dit-Lit/PT.01.05/2022.

Author information

Authors and Affiliations

Authors

Contributions

Aneu: Conceived and designed the analysis and wrote the original draft. Remi Ayu Pratika: Collected the data, Performed the analysis, Wrote and reviewed the original draft. Karna Wijaya: Conceived of the presented idea, Performed the analysis. Hasanudin: Collected the data. Saharman Gea: Collected the data. Won-Chun Oh: Conceived and designed the analysis.

Corresponding author

Correspondence to Karna Wijaya.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interest or personal relationship that could have appeared to influence the work reported in this paper.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

All authors agreed to publish this study at silicon journal.

Conflict of Interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aneu, A., Pratika, R.A., Hasanudin et al. Silica-Based Catalysts for Biodiesel Production: A Brief Review. Silicon 15, 5037–5047 (2023). https://doi.org/10.1007/s12633-023-02403-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02403-9

Keywords

Navigation