Skip to main content
Log in

Design and Performance Projection of Virtually Doped Dual Gate Junctionless IMOS

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This research investigates the virtually doped dual gate junctionless impact ionization MOS (DG-JL-IMOS). Virtually doped source and drain regions are realized through the genesis of charge plasma using different work-functions for their electrodes, easing the process complexity with simultaneous reduction of process-induced variations to implant uniform doping. The proposed DG-JL-IMOS device exhibits two order increase in \(I_{ON}/I_{OFF}\) ratio at a lower source bias of \(-4.5\) V with respect to \(-5\) V required for a single gate JIMOS device. This work further examines the breakdown behavior of the proposed DG-JL-IMOS by analyzing carrier density distribution, impact ionization, and electric field profile through extensive TCAD simulations. The proposed device exhibits a super steep sub-threshold swing (SS) of 0.6 mV/dec over several orders of drain current, which is not achieved by any other counterpart steep-slope technologies. The effect of interface traps on the proposed DG-JL-IMOS is studied and investigated for hysteresis in the transfer characteristics. Furthermore, analog parameters such as transconductance (\(g_{m}\)), unity gain cutoff-frequency (\(f_{T}\)), and current gain of the proposed device are evaluated and compared with conventional DG-IMOS. It is observed that the proposed device shows a \(2.6\times \) increase in \(I_{ON}\), \(1.7\times \) higher \(g_{m}\), \(1.6\times \) higher \(f_{T}\), and a 5 dB improvement in current gain compared to conventional DG-IMOS. The proposed DG-JL-IMOS device breakdowns at a voltage, (\(V_{BD}\)) of \(-4.21\) V, whereas DG-IMOS breakdowns at \(-4.75\) V. The enhanced performance metrics of DG-JL-IMOS elucidate its suitability for high-speed and high-performance analog applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

For this submission, there are no related research data sets.

References

  1. Memisevic E, Svensson J, Hellenbrand M, Lind E, Wernersson LE (2016) In: 2016 IEEE international electron devices meeting (IEDM). pp 19.1.1–19.1.4. https://doi.org/10.1109/IEDM.2016.7838450

  2. Lin CI, Khan AI, Salahuddin S, Hu C (2016) IEEE Trans Electron Devices 63(5):2197. https://doi.org/10.1109/TED.2016.2514783

    Article  Google Scholar 

  3. Ko E, Lee JW, Shin C (2017) IEEE Electron Device Lett 38(4):418. https://doi.org/10.1109/LED.2017.2672967

    Article  CAS  Google Scholar 

  4. Dewey G, Chu-Kung B, Boardman J, Fastenau JM, Kavalieros J, Kotlyar R, Liu WK, Lubyshev D, Metz M, Mukherjee N, Oakey P, Pillarisetty R, Radosavljevic M, Then HW, Chau R (2011) In: 2011 international electron devices meeting. pp 33.6.1–33.6.4. https://doi.org/10.1109/IEDM.2011.6131666

  5. Parihar MS, Kranti A (2014) Appl Phys Lett 105(3):033503

    Article  Google Scholar 

  6. Singh A, Chaudhary S, Sharma SM, Sarkar C (2020) Silicon 12(11):2555

    Article  Google Scholar 

  7. Li KS, Chen PG, Lai TY, Lin CH, Cheng CC, Chen CC, Wei YJ, Hou YF, Liao MH, Lee MH, Chen MC, Sheih JM, Yeh WK, Yang FL, Salahuddin S, Hu C (2015) In: 2015 IEEE international electron devices meeting (IEDM). pp 22.6.1–22.6.4. https://doi.org/10.1109/IEDM.2015.7409760

  8. Shafi N, Bhat AM, Parmaar JS, Porwal A, Sahu C, Periasamy C (2021) Silicon pp 1–13

  9. Tripathy MR, Singh AK, Samad A, Singh PK, Baral K, Jit S (2020) Semicond Sci Technol 35(10):105014

    Article  CAS  Google Scholar 

  10. IEEE IRDS (2021)

  11. Gargini P (2000) In: GaAs IC Symposium. IEEE Gallium arsenide integrated circuits symposium. 22nd Annual Technical Digest 2000. (Cat. No.00CH37084). pp 3–5. https://doi.org/10.1109/GAAS.2000.906261

  12. Thompson S (1998) Intel Technology Journal

  13. Edenfeld D, Kahng A, Rodgers M, Zorian Y (2004) Computer 37(1):47. https://doi.org/10.1109/MC.2004.1260725

    Article  Google Scholar 

  14. Schaller R (1997) IEEE Spectr 34(6):52. https://doi.org/10.1109/6.591665

    Article  Google Scholar 

  15. Frank D, Dennard R, Nowak E, Solomon P, Taur Y, Wong HSP (2001) Proc IEEE 89(3):259. https://doi.org/10.1109/5.915374

    Article  CAS  Google Scholar 

  16. Skotnicki T, Hutchby J, King TJ, Wong HS, Boeuf F (2005) IEEE Circ Devices Mag 21(1):16. https://doi.org/10.1109/MCD.2005.1388765

    Article  Google Scholar 

  17. Horowitz M, Alon E, Patil D, Naffziger S, Kumar R, Bernstein K (2005) In: IEEE Internationalelectron devices meeting, 2005. IEDM Technical Digest. pp 7–15. https://doi.org/10.1109/IEDM.2005.1609253

  18. Ionescu AM, Riel H (2011) Nature 479(7373):329

    Article  CAS  PubMed  Google Scholar 

  19. Gopalakrishnan K, Griffin P, Plummer J (2002) In: Digest. International Electron Devices Meeting. pp 289–292. https://doi.org/10.1109/IEDM.2002.1175835

  20. Sahay S, Kumar MJ (2019) Emerging Fet Architectures. pp 27–66. https://doi.org/10.1002/9781119523543.ch2

  21. Gopalakrishnan K, Griffin P, Plummer J (2005) IEEE Trans Electron Devices 52(1):69. https://doi.org/10.1109/TED.2004.841344

    Article  CAS  Google Scholar 

  22. Gopalakrishnan K, Woo R, Jungemann C, Griffin P, Plummer J (2005) IEEE Trans Electron Devices 52(1):77. https://doi.org/10.1109/TED.2004.841345

    Article  CAS  Google Scholar 

  23. Choi WY (2010) Curr Appl Phys 10(2):444

    Article  Google Scholar 

  24. Han D, Bonomo G, Ruiz DC, Arabhavi AM, Ostinelli OJS, Bolognesi CR (2022) IEEE Transactions on Electron Devices pp 1–7. https://doi.org/10.1109/TED.2022.3171739

  25. Han D, Bonomo G, Ruiz DC, Arabhavi AM, Ostinelli OJS, Bolognesi CR (2022) IEEE Transactions on Electron Devices pp 1–8. https://doi.org/10.1109/TED.2022.3171736

  26. Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’neill B, Blake A, White M (2010) Nat Nanotechnol 5(3):225

  27. Savio A, Monfray S, Charbuillet C, Skotnicki T (2009) IEEE Trans Electron Devices 56(5):1110. https://doi.org/10.1109/TED.2009.2015163

    Article  CAS  Google Scholar 

  28. Sahu C, Singh J (2014) IEEE Electron Device Lett 35(3):411. https://doi.org/10.1109/LED.2013.2297451

    Article  CAS  Google Scholar 

  29. Shrivastava V, Kumar A, Sahu C, Singh J (2016) Solid-State Electron 117:94

    Article  CAS  Google Scholar 

  30. Singh S, Kondekar P (2015) J Semicond 36(7):074001

    Article  Google Scholar 

  31. Ramaswamy S, Kumar MJ (2014) IEEE Trans Electron Devices 61(12):4295. https://doi.org/10.1109/TED.2014.2361343

    Article  CAS  Google Scholar 

  32. Shafi N, Sahu C, Periasamy C (2018) Superlattices Microstruct 120:75

    Article  CAS  Google Scholar 

  33. Toh EH, Wang GH, Chan L, Samudra GS, Yeo YC (2008) Jpn J Appl Phys 47(4S):3077

    Article  CAS  Google Scholar 

  34. Santa Clara C (2022) Silvaco International

  35. Choi WY, Song JY, Lee JD, Park Y, Park BG (2005) IEEE Trans Nanotechnol 4(3):322. https://doi.org/10.1109/TNANO.2005.847001

    Article  Google Scholar 

  36. Sahay S, Kumar MJ (2017) IEEE Trans Electron Devices 64(7):3007. https://doi.org/10.1109/TED.2017.2702067

    Article  CAS  Google Scholar 

  37. Navlakha N, Lin JT, Kranti A (2017) IEEE Trans Electron Devices 64(4):1561. https://doi.org/10.1109/TED.2017.2662703

    Article  Google Scholar 

  38. Aoulaiche M, Nicoletti T, Mendes Almeida L, Simoen E, Veloso A, Blomme P, Groeseneken G, Jurczak M (2012) IEEE Trans Electron Devices 58(8):2167. https://doi.org/10.1109/TED.2012.2200685

  39. Lahgere A, Kumar MJ (2017) IEEE Trans Electron Devices 64(1):3. https://doi.org/10.1109/TED.2016.2622741

    Article  CAS  Google Scholar 

  40. Musalgaonkar G, Sahay S, Saxena RS, Kumar MJ (2019) IEEE Trans Electron Devices 66(2):868. https://doi.org/10.1109/TED.2018.2887168

    Article  CAS  Google Scholar 

  41. Pandey CK, Singh A, Chaudhury S (2021) Microelectron Reliab 122:114166

    Article  CAS  Google Scholar 

  42. Tiwari S, Saha R (2022) Microelectron Reliab 137:114780

    Article  Google Scholar 

  43. Venkatesh P, Nigam K, Pandey S, Sharma D, Kondekar PN (2017) IEEE Trans Device Mater Reliab 17(1):245. https://doi.org/10.1109/TDMR.2017.2653620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support provided by “The Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur.”

Author information

Authors and Affiliations

Authors

Contributions

Dasari Srikanya (first author) proposed and performed this work. Regarding simulations and data accomplishment, Nawaz Shafi supported the needed assistance. Dr. Chitrakant Sahu supervised this research and significantly improved the final paper through discussions and suggestions.

Corresponding author

Correspondence to Dasari Srikanya.

Ethics declarations

Competing Interests

It is declared that none of the authors have any competing financial interests or relationships that might have influenced their work.

Conflicts of interest

Authors declare that they do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanya, D., Shafi, N. & Sahu, C. Design and Performance Projection of Virtually Doped Dual Gate Junctionless IMOS. Silicon 15, 6061–6072 (2023). https://doi.org/10.1007/s12633-023-02364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02364-z

Keywords

Navigation