Skip to main content
Log in

A Complete Analytical RF Model for Nanoscale Semiconductor-On-Insulator MOSFET

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Properly validated theoretical models are needed to understand the device and circuit level performance of MOSFET at high frequency. Analytical as well as compact models have special significance due to its SPICE simulator compatibility. Perhaps, most of the RF modelling approaches requires experimental Y, Z or S parameters to start with, which limits their acceptability in SPICE simulators. Considering this, under an innovative approach, starting from basic device physics, a complete generalized analytical RF model is developed for Semiconductor-On-Insulator MOSFET. Mathematical expressions for important MOSFET parameters valid at RF range are developed. Numbers of unique and justified mathematical formulations are adopted throughout the analysis to keep the parameter expressions simple but accurate. Parameters expressions are used to simulate and plot Y parameters with different structural and operational variables. These results are compared with reference results to check for validity. RF performance of current and upcoming Semiconductor-On-Insulator MOSFET structures are simulated and compared for better device selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramo S, Whinnery JR, Duzer TV (1993) Fields and waves in communication electronics, 3rd edn. John Wiley & Sons Inc., pp 537–541

    Google Scholar 

  2. Del Alamo JA et al (2016) Nanometer-Scale III-V MOSFETs. IEEE J Electron Dev Soc 4(5)

  3. Liu Y et al (2010) In: Oktyabrsky S, Ye PD (eds) Fundamentals of III–V Semiconductor MOSFETs. Springer, pp 31–50

  4. Tang Y, Zhang L, Wang Y (2010) Accurate Small Signal modeling and extraction of Silicon MOSFET for RF IC application. Solid-State Electron 54:1312–1318

    Article  CAS  Google Scholar 

  5. Zarate–Rincon F, Torres-Torres R, Murphy-Arteaga RS (2015) Consistent DC and RF MOSFET modeling using an S- parameter measurement–based parameter extraction method in the linear region. IEEE Trans Microwave Theory Techn 63(12)

  6. Cao Y, Zhang W, Fu J (2019) A complete small-signal MOSFET model and parameter extraction technique for millimeter wave applications. IEEE J Electron Dev Soc 7:398–403

    Article  CAS  Google Scholar 

  7. Bhattacharyya A (2009) Compact MOSFET models for VLSI design. Wiley-Blackwell

    Book  Google Scholar 

  8. Chalkiadaki MA, Enz CC (2015) RF small-signal and noise modeling including parameter extraction of nanoscale MOSFET from weak to strong inversion. IEEE Trans Microwave Theory Techn 63(7)

  9. Jankovic N, Pesic-Brdjanin T (2015) Spice modeling of oxide and interface trapped charge effects in fully-depleted double-gate FinFETs. J Comput Electron 14:844–851

    Article  CAS  Google Scholar 

  10. Zhang C-M, Jazaeri F, Borghello G (2021) A generalized EKV charge based MOSFET model including oxide and interface traps. Solid State Electron 177

  11. Wenyu Y et al (2016) A physical model of hole mobility for germanium-on-insulator pMOSFETs. J Semicond 37(4):044004–044011

    Article  Google Scholar 

  12. Deb S, Basanta Singh N, Islam N, Sarkar SK (2012) Work function engineering with linearly graded binary metal alloy gate electrode for short channel SOI MOSFET. IEEE Trans Nano Technol 11(3):472–478

    Article  Google Scholar 

  13. ManikandanS, Balamurugan NB, Nirmal D (2020) Analytical model of double gate stacked oxide junctionless transistor considering source/drain depletion effects for CMOS low power applications. Silicon 2053–2063

  14. Jagadesh Kumar M, Chaadhry A (2004) Two dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans Electron Dev 51(4)

  15. Batwani H et al (2009) Analytical drain current model for nanoscale strained-Si/SiGe MOSFETs. Int J Comput Math Electr Electron Eng 28(2):353–371

    Article  Google Scholar 

  16. RajarajachozhanC, Basanta Singh N, Deb S (2018) High frequency analytical modelling and performance comparison of nanoscale SOI MOS structures. Int J Electron 105

  17. Dutta AK (2008) Semiconductor devices and circuits. Oxford University Press

    Google Scholar 

  18. Arora ND (2007) MOSFET models for VLSI circuit simulation: theory and practice. Springer Verlag, Wien, New York

    Book  Google Scholar 

  19. Lazaro A, Iniguez B (2006) RF and noise performance of double gate and single gate SOI. Solid State Electron 50(5)

  20. Kwon I, Je M, Lee K, Shin H (2002) A simple and analytical parameter-extraction method of a microwave MOSFET. IEEE Trans Electron Dev 50(6)

  21. Frickey DA (1994) Conversion between S, Z, Y, h, ABCD and T parameters which are valid for complex source and load impedances. IEEE Trans Microwave Theory Techn 42(2)

  22. Cheng Y, Jamal Deen M, Chen C-H (2005) MOSFET modeling for RF IC design. IEEE Trans Electron Dev 52(7)

  23. Deb S, Ghosh S, Basanta Singh N, De AK, Sarkar SK (2011) A two dimensional analytical model based comparative threshold performance analysis of SOI-SON MOSFETs. J Semicond 32(10)

  24. Kim G, Shimizu Y, Murakami B (2006) Accurate small signal modeling of FD-SOI MOSFETs. IEICE Trans Electron E89-c(4)

  25. Chi YS, Lu JX, Zhang SY, Wu ZJ, Huang FY (n.d.) An analytical parameter extraction of the small-signal model for RF MOSFETs. IEEE Conference on Electron Devices and Solid-State Circuits

Download references

Author information

Authors and Affiliations

Authors

Contributions

1st author – C Rajarajachozhan: Analytical modeling and simulation work, Original draft preparation, Final draft validation

2nd author – S Karthick: Study conception and design, checked the results and validation, Literature review.

3rd author – Sanjoy Deb: Supervision, Formal analysis and investigation.

4th author – N Basanta Singh: Final Draft Preparation.

Corresponding author

Correspondence to C. Rajarajachozhan.

Ethics declarations

Ethics Approval and Consent to Participate

Authors freely agreed and gave their consent for the publication of the paper.

Conflicts of Interest

The authors have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Authors Agreement

We declare that the manuscript entitled “A Complete Analytical RF Model for Nanoscale Semiconductor-On-Insulator MOSFET” is original, has not been full or partly published before, and is not currently being considered for publication elsewhere.

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirmthat the order of authors listed in the manuscript has been approved by the undersigned.

We understand that the Corresponding Author is the sole contact for the editorial process. The corresponding author "C.Rajarajachozhan" is responsible for communicating with the other authors about process, submissions of revisions, and final approval of proofs."

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Equations number mentioned as Refer in manuscript are accounted below:

$$\mathrm i.\;\mathrm A=\frac{{\mathrm V}_{\mathrm{bi}}\left(1-\mathrm e^{\sqrt{{\mathrm P}_2}\mathrm L}\right)+2{\mathrm V}_{\mathrm{bi}}\sinh(\sqrt{{\mathrm P}_2}\mathrm L)-{\mathrm V}_1\left(\mathrm e^{\sqrt{{\mathrm P}_2}\mathrm L}-1\right)+2{\mathrm V}_1\sinh(\sqrt{{\mathrm P}_2}\mathrm L)+{\mathrm V}_{\mathrm{ds}}}{2\sinh\sqrt{{\mathrm P}_2}\mathrm L}$$

The entire numerator terms are considered to be for simplification. So expression A can be written as

$$A=\frac{V_P}{2\,\sinh\,\sqrt{{\mathrm P}_2}\mathrm L}$$
(48)
$$\mathrm{ii}.\;\varphi_s\left(x\right)=\frac{V_P}{2\,\sinh\,\mathrm{ML}}exp\sqrt{\frac{P_2}{P_1}}x+\frac{{\mathrm V}_{\mathrm Q}}{2\,\sinh\,\mathrm{ML}}exp\left(-\sqrt{\frac{P_2}{P_1}}\right)x-\frac{P_3}{P_2}$$
(49)
$$\mathrm{iii}.\,{\mathrm{ E}}_{1}=\left\{\begin{array}{c}\frac{\mathrm{q}\left[1+\frac{2{C}_{c}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}\right] {{\left({\mathrm{t}}_{\mathrm{c}}^{\mathrm{^{\prime}}}\right)}^{2}{\mathrm{n}}_{\mathrm{a}}}_{ }}{2{\in }_{\mathrm{Ch}}\left[{\upeta }_{2}\left(\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{g}}}{{C}_{c}}\right)+1+\left(\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{g}}}{{C}_{c}}\right)\right]}-\frac{{\mathrm{V}}_{\mathrm{Subf}}}{\left[{\upeta }_{2}\left(\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{g}}}{{C}_{c}}\right)+1+\left(\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{g}}}{{C}_{c}}\right)\right]}\\ +\frac{{\upeta }_{1}\left[\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{g}}}{{\mathrm{C}}_{\mathrm{c}}}\right]}{\left[{\upeta }_{2}\left(\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{g}}}{{C}_{c}}\right)+1+\left(\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{g}}}{{C}_{c}}\right)\right]}\end{array}\right\}- {\mathrm{V}}_{\mathrm{gs}}\left\{\frac{[\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{f}}}{{\mathrm{C}}_{\mathrm{c}}}]}{{\upeta }_{2}(\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{g}}}{{C}_{c}})+1+(\frac{{\mathrm{C}}_{\mathrm{g}}{\mathrm{t}}_{\mathrm{b}}}{{\in }_{\mathrm{b}}}+\frac{{\mathrm{C}}_{\mathrm{g}}}{{C}_{c}})}\right\}$$
(50)
$$\mathrm{iv}.{\mathrm V}_{\mathrm{th}}=\frac{2\mathrm{DE}\;\mathrm{Sin}\mathrm h^2\left(\mathrm{ML}\right)\pm\sqrt{\left\{2\mathrm{DE}\;\mathrm{Sin}\mathrm h^2(\mathrm{ML})\right\}^2+4\left\{\mathrm E^2\mathrm{Sinh}^2\left(\mathrm{ML}\right)\right\}\times\left\{{\mathrm V}_{\mathrm P}{\mathrm V}_{\mathrm Q}-\mathrm D^2\mathrm{Sinh}^2\left(\mathrm{ML}\right)-4\mathrm V_{\mathrm{bi}}^2\mathrm{Sin}\mathrm h^2(\mathrm{ML})\right\}}}{2\left\{\mathrm E^2\mathrm{Sinh}^2\left(\mathrm{ML}\right)\right\}}$$
(51)
$$\mathrm{v}.\, {I}_{ds,lin}={\mu }_{n}^{\prime}{C}_{f}\left(\frac{W}{L}\right){\{V}_{gs}{V}_{ds}-0.5{V}_{ds}^{2}-[\frac{\left({G}^{2}-G+2F{X}_{1}{X}_{2}-2F{N}_{2} -2F{N}_{1}\right){V}_{ds}}{2F}+\frac{0.5{V}_{ds}^{2}(2F{X}_{2}-2F{X}_{1})}{2F} ]\}$$
(52)
$$\mathrm{vi}. {g}_{d,Linear}={|{\mu }_{n}{C}_{OX}\left(\frac{W}{L}\right)\left[-{V}_{ds}+{V}_{gs}-\left\{\frac{{Z}_{1}}{2F}+\frac{{V}_{ds}}{2F}\left(2F{X}_{2}-2F{X}_{1}\right)\right\}\right]|}_{{V}_{gs=constant}}$$
(53)
$$\mathrm{vii}. {V}_{ds}^{sat}=\frac{\left(\frac{W}{L-\Delta L}\right)\left({\mu }_{n}^{\prime}{C}_{g}{V}_{gs}\right)-\left(\frac{W}{L-\Delta L}\right)\left({\mu }_{n}^{\prime}{C}_{g}\left(\frac{{G}^{2}-G+2F{X}_{1}{X}_{2}-2F{N}_{2}-2F{N}_{1} }{2F}\right)\right)}{\left(\frac{W}{L-\Delta L}\right)({\mu }_{n}^{\prime}{C}_{g}+\frac{{\mu }_{n}^{\prime}{C}_{g}\left(-2F{X}_{1}+2F{X}_{2}\right)}{2F})}$$
(54)
$$\mathrm{viii}.\, {Q}_{s}^{\prime}={J}_{1}+\frac{{J}_{1}\sqrt{{X}_{1}{X}_{2}{V}_{T}}}{\mathrm{sinh}\left(ML\right)}\left(1+\frac{\left({X}_{2}-{X}_{1}\right){V}_{ds}}{2{X}_{1}{X}_{2}}\right)-\frac{{J}_{1}{B}_{1}}{{P}_{2}{V}_{T}}[\frac{q{N}_{A}}{{\varepsilon }_{c}}-\frac{2{V}_{bs}}{{\left({t}_{c}^{\prime}\right)}^{2}\left[1+\frac{2{C}_{c}{t}_{b}}{{\varepsilon }_{b}}\right]}-\frac{2\left({V}_{gs}-{\eta }_{1}\right)[\frac{{\varepsilon }_{s}{t}_{b}}{{\varepsilon }_{b}}+\frac{{C}_{g}}{{C}_{c}}]}{{({t}_{c}^{\prime})}^{2}[1+\frac{2{C}_{c}{t}_{b}}{{\varepsilon }_{b}}]}]$$
(55)
$$\mathrm{ix}.\, {A}_{1}=\frac{\left({R}_{gs}S{C}_{gs}+1\right)[{R}_{ds}{R}_{m}+({R}_{ds}S{C}_{ds}+1)]}{{R}_{gs}S{C}_{gs}{SC}_{gd}\left[{R}_{ds}{R}_{m}+{R}_{ds}S{C}_{ds}+1\right]+S{C}_{gd}\left[{R}_{ds}{R}_{m}+{R}_{ds}S{C}_{ds}+1\right]+S{C}_{gs}\left[{R}_{ds}{R}_{m}+\left({R}_{ds}S{C}_{ds}+1\right)\right]+{R}_{ds}S{C}_{gs}S{C}_{gd}}$$
(56)
$$\mathrm{X}.\,{B}_{1}=\frac{{R}_{ds}S{C}_{gs}}{{R}_{gs}S{C}_{gs}S{C}_{gd}\left[{R}_{ds}{R}_{m}+{R}_{ds}S{C}_{ds}+1\right]+S{C}_{gd}\left[{R}_{ds}{R}_{m}+{R}_{ds}S{C}_{ds}+1\right]+S{C}_{gs}\left[{R}_{ds}{R}_{m}+\left({R}_{ds}S{C}_{ds}+1\right)\right]+{R}_{ds}S{C}_{gs}S{C}_{gd}}$$
(57)
$$\mathrm{xi}.\, {C}_{1}=\frac{({R}_{gs}S{C}_{gs}+1){R}_{ds}S{C}_{gd}}{{R}_{gs}S{C}_{gs}S{C}_{gd}\left[{R}_{ds}{R}_{m}+{R}_{ds}S{C}_{ds}+1\right]+S{C}_{gd}\left[{R}_{ds}{R}_{m}+{R}_{ds}S{C}_{ds}+1\right]+S{C}_{gs}\left[{R}_{ds}{R}_{m}+\left({R}_{ds}S{C}_{ds}+1\right)\right]+{R}_{ds}S{C}_{gs}S{C}_{gd}}$$
(58)
$$\mathrm{xii}.\, {Z}_{11}={R}_{g}+\frac{{A}_{1}{D}_{1}j\omega {C}_{db}+\left[\left({B}_{1}j\omega {C}_{db}+1\right)\left({A}_{1}+{D}_{1}\right)\right]}{{D}_{1}j\omega {C}_{db}+\left({B}_{1}j\omega {C}_{db}+1\right)+\left[{A}_{1}{D}_{1}j\omega {C}_{db}+\left({A}_{1}+{D}_{1}\right)\left({B}_{1}j\omega {C}_{db}+1\right)\right]j\omega {C}_{gb}}$$
(59)
$$\mathrm{xiii}.\, {Z}_{12}=\frac{\left({A}_{1}j\omega {C}_{gb}+1\right){D}_{1}}{\left({A}_{1}j\omega {C}_{gb}+1\right){D}_{1}j\omega {C}_{db}+{B}_{1}j\omega {C}_{db}\left[{A}_{1}j\omega {C}_{gb}+{D}_{1}j\omega {C}_{gb}+1\right]+{A}_{1}j\omega {C}_{gb}+1+{D}_{1 }j\omega {C}_{gb}}$$
(60)
$$\mathrm{xiv}.\, {Z}_{21}=\frac{\left({B}_{1}j\omega {C}_{db}+1\right){D}_{1}}{\left({B}_{1}j\omega {C}_{db}+1\right)+{D}_{1}j\omega {C}_{db}+{A}_{1}j\omega {C}_{gb}\left({B}_{1}j\omega {C}_{db}+{D}_{1}j\omega {C}_{db}+1\right)+({B}_{1}j\omega {C}_{db}+1){D}_{1}j\omega {C}_{gb}}$$
(61)
$$\mathrm{xv}.\,Z_{22}=R_d+\frac{B_1\left[A_1j\omega C_{gb}+1+D_1j\omega C_{gb}\right]+\left[A_1j\omega C_{gb}+1\right]D_1}{B_1\left[A_1j\omega C_{gb}+1+D_1j\omega C_{gb}\right]+\left(A_1j\omega C_{gb}+D_1\right)j\omega C_{db}+\lbrack A_1j\omega C_{gb}+1+D_1j\omega C_{gb}\rbrack}$$
(62)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajarajachozhan, C., Karthick, S., Deb, S. et al. A Complete Analytical RF Model for Nanoscale Semiconductor-On-Insulator MOSFET. Silicon 15, 3049–3062 (2023). https://doi.org/10.1007/s12633-022-02215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02215-3

Keywords

Navigation