Skip to main content

Advertisement

Log in

Influence of Silicon Addition on the Microstructure and Mechanical Properties of WE43 Alloy

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The investigation aims to study the microstructure and mechanical property changes of various silicon added WE43 alloys. With the increase in Si addition, the Mg2Si phase forms randomly in grains apart from the formed neodymium and yttrium rich phases like Mg24Y5 and Mg41Nd5. The morphology of the eutectic Mg2Si phase changes to a tiny needle shape on 0.5% addition of silicon and upon 1%, it again transforms to a Chinese script phase when the addition increases above 1%, along with the formed eutectic Mg2Si phase, polygonal primary Mg2Si phase. Simultaneously, a new intermetallic was developed based on the quantity of silicon addition; at lower silicon addition, it’s a star-shaped compound and in higher addition, rare earth silicon intermetallic phase was formed, which is confirmed through scanning electron microscopy analyses. The hardness of WE43 alloy varies from 77 to 97 BHN; the YS (162 MPa), UTS (196 MPa) and % E (4.94%) gradually decline as silicon addition exceeds 1%. Silicon minimizes dislocations and strain flow locations, whereas the improved characteristics are likely due to solid solution strengthening and grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All the original data are available with the corresponding author.

Code Availability

Not applicable.

References

  1. Zhang J, Liu S, Wu R, Hou L, Zhang M (2018). J Magnes Alloy 6:277–291

    Article  CAS  Google Scholar 

  2. Mezbahul-Islam M, Mostafa AO, Medraj M (2014). J Mater 33. https://doi.org/10.1155/2014/704283

  3. Lyu S, Xiao W, Zheng R, Wang F, Hu T, Ma C (2018). Mater Sci Eng A. https://doi.org/10.1016/j.msea.2018.06.085

  4. Ma C, Peng G, Nie L, Liu H, Guan Y (2018). Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.03.174

  5. Xie J, Zhang J, Zihao Y, Lui S, Guan K, Wu R, Wang J, Feng J (2021) J Magnes Alloy 9:41–56

  6. Smithstegen K (2015). Energy Policy 79:1–8

    Article  CAS  Google Scholar 

  7. Marazza R, Riani P, Cacciamani G (2008). Inorganica Chim Acta 361:3800–3806

    Article  CAS  Google Scholar 

  8. Byrne RH, Biqiong L (1995). Geochimicaet Cosmochimica Acta 59(22):4575–4589

    Article  CAS  Google Scholar 

  9. Hampl M, Blawert C, Campos MRS, Hort N, Peng Q, Kainer KU, Schmid-Fetzer R (2013). J Alloys Compd 581:166–177

    Article  CAS  Google Scholar 

  10. Okamoto H (1993). J Phase Equilib 14:257–259

    Article  Google Scholar 

  11. Ghorbanpoura S, Brandon A, McWilliams MK (2019). Mater Sci Eng A 747:27–41

    Article  Google Scholar 

  12. Yamada K, Okubo Y, Shiono M, Watanabe H, Kamado S, Kojima Y (2006). Mater Trans 47:1066–1070

    Article  CAS  Google Scholar 

  13. Chou D, Hong D, Saha P, Ferrero J, Lee B, Tan Z, Dong Z, Kumta PN (2013). Acta Biomater 9:8518–8533

    Article  CAS  PubMed  Google Scholar 

  14. Su ZJ, Liu CM, Wang YC, Shu X (2013). Mater Sci Technol 29:148–155

    Article  CAS  Google Scholar 

  15. Anyanwu IA, Kamado S, Kojina Y (2001). Mater Trans 412:1206–1211

    Article  Google Scholar 

  16. Aghion E, Levy G, Ovadia S (2012). J Mater Sci Mater Med 23:805–812. https://doi.org/10.1007/s10856-011-4536-8

    Article  CAS  PubMed  Google Scholar 

  17. Luo K, Zhang L, Wu G, Liu W, Ding W (2019). J Magnes Alloy 7:345–354

    Article  CAS  Google Scholar 

  18. Sudholz AD, Gusieva K, Chen XB, Muddle BC, Gibson MA, Birbilis N (2011). Corros Sci 53:2277–2282

    Article  CAS  Google Scholar 

  19. Rokhlin LL, Nikitina NI (1998). J Alloys Compd 279:166–170

    Article  CAS  Google Scholar 

  20. Kumar KKA, Pillai UTS, Pai BC, Chakraborty M (2013). Met Mater Int 19:1167–1172

    Article  Google Scholar 

  21. Mordike BL, Ebert T (2001). Mater Sci Eng A 302:37–45

    Article  Google Scholar 

  22. X. Xu, X. Chen, W. Du, Y.Geng, F. Pan. https://doi.org/10.1016/j.jmst.2017.04.011

  23. Meier JM, Caris J, Luo AA (2022). J Magnes Alloy 10:1401–1427

    Article  CAS  Google Scholar 

  24. Sun Q, Cheng H, Mei X, Liu Y, Li G, Xu Q, Lu X (2020). Sci Rep. https://doi.org/10.1038/s41598-020-66894-x

  25. Yanova EAL, Rokhlin LL, Dobatkina TV, Korol’kova IG (2012). Russ Metall 7:625–629

    Google Scholar 

  26. Kaya A, Hamu GB, Eliezer D, Shin KS, Kohen S (2006). Met Sci Heat Treat No 11:46–50

    Google Scholar 

  27. Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drucker H, Vogt C, Hort N (2010). Acta Biomater 6:1834–1842

    Article  CAS  PubMed  Google Scholar 

  28. Sasha P, Viswanathan S (2011). AFS Proceedings 11:1–11

    Google Scholar 

  29. Jiang HS, Zheng MY, Qiao XG, Wu K, Peng QY, Yang SH, Yuan YH, Luo JH (2016). Mater Sci Eng A 684:158–164

    Article  Google Scholar 

  30. Chen Q, Xia X, Yuan B, Shu D, Zhao Z, Han J (2014). Mater Sci Eng A 593:38–47

    Article  CAS  Google Scholar 

  31. Ninlachart J, Karmiol Z, Chidambaram D, Raja KS (2017). J Magnes Alloy 2:147–165

    Article  Google Scholar 

  32. Xiang C, Gupta N, Coelho P, Cho K (2018). Mater Sci Eng A 710:74–85

    Article  CAS  Google Scholar 

  33. Jie LZ, Hua WUG, Cai LW, Song P, Jiang DW (2012). Trans Nonferrous Met Soc China 22:1540–1548

    Article  Google Scholar 

  34. Mabuchi M, Higashi K (1996). Acta Mater 44:4611–4618

    Article  CAS  Google Scholar 

  35. Zhang X, Li YJ, Zhang K, Wang CS, Li HW, Ma ML, Zhang BD (2013). Trans Nonferrous Met Soc China 23:1226–1236

    Article  CAS  Google Scholar 

  36. Rzychon T, Kielbus A (2007). J Achiev Mater Manuf Eng 684:158–164

    Google Scholar 

  37. Pereira GS, Koga GY, Avila JA, Bittencourt IM, Fernandez F, Miyazaki MH, Botta WJ, Filho WWB (2021). Mater Chem Phys 272:124930

    Article  CAS  Google Scholar 

  38. Esmaily M, Zeng Z, Mortazavi AN, Gullino A, Choudhary S, Derra T, Benn F, D’Elia F, Muther M, Thomas S, Huang A, Allanore A, Kopp A, Birbilis N. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101321

  39. Yan XY, Zhang F, Chang YA (2000). J Phase Equilib 21:379–384

    Article  CAS  Google Scholar 

  40. Kumar KKA, Pillai UTS, Pai BC, Chakraborty M (2012). Mater Sci For 710:401–406

    CAS  Google Scholar 

  41. Sundararaju G, Thangadurai KR, Charman CA, Kumar KKA (2021). Silicon. https://doi.org/10.1007/s12633-021-01255-5

  42. Kumar KKA, Srinivasan A, Pillai UTS, Pai BC, Chakraborty M (2022). Silicon. https://doi.org/10.1007/s12633-021-01521-6

Download references

Acknowledgements

The authors are indebted to the casting and characterization tests like optical microstructure, hardness and tensile testing by MatRICS – Materials Research and Innovation Centric Solutions, Vellimalai, Kanyakumari District, 629 204, INDIA, Tel: +91 91766 06699; web: www.matricstech.com.

Author information

Authors and Affiliations

Authors

Contributions

S. Muthu Kumar, K.K. Ajith Kumar and J.Godwin contributed to the design and implementation of the research and writing the manuscript.

Corresponding author

Correspondence to K. K. Ajith Kumar.

Ethics declarations

Research Involving Human Participants and/ or Animals

Not Applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Publishers can publish images and results there are no restrictions.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumar, S., Ajith Kumar, K.K. & Godwin, J. Influence of Silicon Addition on the Microstructure and Mechanical Properties of WE43 Alloy. Silicon 15, 1535–1544 (2023). https://doi.org/10.1007/s12633-022-02166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02166-9

Keywords

Navigation