Skip to main content

Advertisement

Log in

A Comprehensive Review of Recent Progress, Prospect and Challenges of Silicon Carbide and its Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Energy efficient electronic design has become imperative due to the depletion of non-renewable energy resources, worldwide increase in power consumption, and significant loss in energy conversion. Silicon Carbide (SiC) is one of the material exhibiting excellent features with its physio and thermo-electric properties to operate in a harsh environments like high temperature, corrosive, and radiation ambiance with low energy consumption. Further properties viz. similar thermal oxidation state like silicon, good chemical stability in reactive environments enlarge the application spectrum of silicon carbide ranging from simple abrasive material to substrate for GaN power amplifiers used in 5G massive multiple input multiple output (mMIMO) applications and luminescent down shifting (LDS) layer in photovoltaic (PV) cells. It would be much interesting to acquaint the properties, progress, and applications of such a noble material. In this review, the material properties of SiC are discussed in detail with progress in the device fabrication. Finally, the major application domains of the SiC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. Kumar P, Arif W, Bhowmick B (2017) Scaling of dopant segregation Schottky barrier using metal strip buried oxide MOSFET and its comparison with conventional device. Silicon 10:811–820

    Article  Google Scholar 

  2. Mathur MM, Cooper JA (1999) Time-dependent-dielectric-breakdown measurements of thermal oxides on n-type 6H-SiC. IEEE Trans Electron Dev 46(3):520–524

    Article  Google Scholar 

  3. Morris GK, Phillips MG, Wei L, Lukaszewski RA (2016) Operating IGBTs above rated junction temperature limits: Impacts to reliability and electrical performance. 2016 annual reliability and maintainability symposium (RAMS), pp 1–7

    Google Scholar 

  4. Hu J, Li D, He X, Wang X, Xu B, Zang Y, Li L (2021) Fabrication and characterization of CuAlO2/ 4H–SiC heterostructure on 4H–SiC (0001). Superlattices Microstruct 155:106918

    Article  CAS  Google Scholar 

  5. Biela J, Schweizer M, Waffler S, Kolar JW (2011) SiC versus Si—evaluation of potentials for performance improvement of inverter and DC–DC converter systems by SiC power semiconductors. IEEE Trans Ind Electron 58(7):2872–2882

    Article  Google Scholar 

  6. Kizilyalli IC, Carlson EP, Cunningham DW, Manser JS, Xu YA, Liu AY (2018) Wide band-gap semiconductor based power electronics for energy efficiency. United States Department of Energy

    Book  Google Scholar 

  7. Hudgins JL (2003) Wide and narrow bandgap semiconductors for power electronics: a new valuation. J Electron Mater 32(6):471–477

    Article  CAS  Google Scholar 

  8. Ballestín-Fuertes J, Muñoz-Cruzado-Alba J, Sanz-Osorio JF, Laporta-Puyal E (2021) Role of wide bandgap materials in power electronics for smart grids applications. Electronics. 10(6):677. https://doi.org/10.3390/electronics10060677

    Article  CAS  Google Scholar 

  9. Bertilsson K (2004) Stockholm. Simulation and Optimization of SiC Field Effect Transistors. Ph.D. thesis. Swedan

  10. Neudeck PG (2006) Silicon Carbide Technology ch. 5. The VLSI Handbook

  11. Yuan X (2017) Application of silicon carbide (SiC) power devices: Opportunities, challenges and potential solutions. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, pp 893–900

    Chapter  Google Scholar 

  12. Son NT, Anderson CP, Bourassa A, Miao KC, Babin C, Widmann M, Niethammer M, Hassan JU, Morioka N, Ivanov IG, Kaiser F, Wrachtrup J, Awschalom DD (2020) Developing silicon carbide for quantum spintronics. Appl Phys Lett 116(190501)

  13. Kimoto T, Cooper JA (2014) Fundamentals of silicon carbide technology growth, characterization, devices, and applications. John Wiley & Sons

    Google Scholar 

  14. Wang B, Yin J, Chen D, Long X, Li L, Lin H-H, Hu W, Talwar DN, Jia R-X, Zhang Y-M, Ferguson IT, Sun W, Feng ZC, Wan L (2021) Optical and surface properties of 3C–SiC thin epitaxial films grown at different temperatures on 4H–SiC substrates. Superlattices Microstruct 156:106960

    Article  CAS  Google Scholar 

  15. She X, Huang AQ, Lucía Ó, Ozpineci B (2017) Review of silicon carbide power devices and their applications. IEEE Trans Ind Electron 64(10):8193–8205

    Article  Google Scholar 

  16. Alves LFS et al (2017) SiC power devices in power electronics: An overview. Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, pp 1–8

    Google Scholar 

  17. Sohor MAHM, Mustapha M, Kurnia JC (2017) Silicon carbide- from synthesis to application: a review. MATEC Web Conf, vol 131, p 04003

    Google Scholar 

  18. Roccaforte F, Greco G, Fiorenza P (2018) Processing issues in SiC and GaN power devices technology: the cases of 4H-SiC planar MOSFET and recessed hybrid GaN MISHEMT. International Semiconductor Conference (CAS), Sinaia, Romania, pp 7–16

    Google Scholar 

  19. Wright NG, Horsfall AB (2007) SiC sensors: a review. J Phys D Appl Phys 40(20):6345

    Article  CAS  Google Scholar 

  20. Katoh Y, Snead LL (2019) Silicon carbide and its composites for nuclear applications– Historical overview. Journal of Nuclear Materials 526:151849

    Article  CAS  Google Scholar 

  21. Elasser A, Chow TP (2002) Silicon carbide benefits and advantages for power electronics circuits and systems. Proc IEEE 90:969–986

    Article  CAS  Google Scholar 

  22. Yang YT, Ekinci KL, Huang XMH, Schiavone LM, Roukes ML, Zorman CA, Mehregany M (2001) Monocrystalline silicon carbide nano electro mechanical systems. Appl Phys Lett 78:162

    Article  CAS  Google Scholar 

  23. Morvan E, Kerlain A, Dua C, Brylinski C (2004) Development of SiC devices for microwave and RF power amplifiers. Silicon Carbide. Springer, pp 839–868

    Chapter  Google Scholar 

  24. Neudeck PG, Okojie RS, Chen L-Y (2002) High-temperature electronics - a role for wide-bandgap semiconductors. Proc IEEE 90(6):1065 2002

    Article  Google Scholar 

  25. Baliga BJ (2018) Silicon carbide power devices: a 35 year journey from conception to commercialization. 76th device research conference (DRC), Santa Barbara, CA, pp 1–2

    Google Scholar 

  26. Giuseppe Vacca. Benefits and advantages of silicon carbide power devices over their silicon counterparts. Semiconductor Today, Compounds & Advanced Silicon. 2017; 12(3)

    Google Scholar 

  27. Dimitrijev S, Cheong KY, Han J, Harrison HB (2002) Charge retention in metal–oxide–semiconductor capacitors on SiC used as nonvolatile-memory elements. Appl Phys Lett 80(18):3421

    Article  CAS  Google Scholar 

  28. Jiang Y, Wu J, Zheng L, Fan X, Lei J (2019) A neutron beam monitor based on silicon carbide semiconductor coated with 6LiF converter. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 921:14–17

    Article  CAS  Google Scholar 

  29. Saddow SE, Agarwal A (2004) Advances in silicon carbide processing and applications. Semiconductor materials and devices series. Artech House, Inc

    Google Scholar 

  30. Dutta D, De DS, Fan D, Roy S, Alfieri G, Camarda M, Amsler M, Lehmann J, Bartolf H, Goedecker S, Jung TA (2019) Evidence for carbon clusters present near thermal gate oxides affecting the electronic band structure, in SiC-MOSFET. Appl Phys Lett 115

  31. Cooper Jr JA, Melloch MR, Singh R, Agarwal A, Palmour JW (2002) Status and prospects for SiC power MOSFETs. IEEE Trans Electron Dev 49:658–664

    Article  CAS  Google Scholar 

  32. Chung G, Williams J, Tin C, McDonald K, Farmer D, Chanana R, Pantelides S, Holland O, Feldman L (2001) Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation. Appl Surf Sci 184:399

    Article  CAS  Google Scholar 

  33. Li H-F, Dimitrijev S, Harrison HB, Sweatman D (1997) Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing. Appl Phys Lett 70:2028

    Article  CAS  Google Scholar 

  34. Chung GY, Tin CC, Williams JR, McDonald K, Di Ventra M, Pantelides ST, Feldman LC, Weller RA (2000) Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide. Appl Phys Lett 76:1713

    Article  CAS  Google Scholar 

  35. Lipkin LA, Das MK, Palmour JW (2002) N2O processing improves the 4H-SiC:SiO2 Interface. Mater Sci Forum 389–393:985–988

    Article  Google Scholar 

  36. Lu C-Y, Cooper JA, Tsuji T, Chung G, Williams JR, McDonald K, Feldman LC (2003) Effect of process variations and ambient temperature on electron mobility at the SiO2 /4H-SiC interface. IEEE Trans Electron Dev 50:1582–1588

    Article  CAS  Google Scholar 

  37. Esakky P, Kailath BJ (2017) Improvement on the electrical characteristics of Pd/HfO2/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing. Appl Surf Sci 413:66–71

    Article  CAS  Google Scholar 

  38. Tanner C, Perng Y-C, Frewin C, Saddow SE, Chang J (2007) Electrical performance of Al2O3 gate dielectric films deposited by atomic layer deposition on 4H-SiC. Appl Phys Lett 91:203510. https://doi.org/10.1063/1.2805742

    Article  CAS  Google Scholar 

  39. Tanner CM, Choi J, Chang JP (2012) Electronic structure and band alignment at the HfO2 / 4H-SiC interface. Interface. 034108

  40. Kumar P, Vinod A, Dharavath K, Bhowmick B (2021) Analysis and simulation of Schottky tunneling using Schottky barrier FET with 2-D analytical modeling. Silicon 14:831–837

    Article  Google Scholar 

  41. Hauck M, Lehmeyer J, Pobegen G et al (2019) An adapted method for analyzing 4H silicon carbide metal-oxide-semiconductor field-effect transistors. Commun Phys 2:5. https://doi.org/10.1038/s42005-018-0102-8

  42. Baliga BJ (2020) Gen-3 PRESiCE™ technology for manufacturing SiC power devices in a 6-inch commercial foundry. 2020 4th IEEE electron devices technology & manufacturing conference (EDTM), pp 1–4. https://doi.org/10.1109/EDTM47692.2020.9117847

    Chapter  Google Scholar 

  43. Guo X, Xun Q, Li Z, Du S (2019) Silicon carbide converters and MEMS devices for high-temperature power electronics: a critical review. Micromachines. 10:1–26. https://doi.org/10.3390/mi10060406

    Article  Google Scholar 

  44. O’Neill M (2005) SiC puts new spin on motor drives. Power Electron Technol 31:2–5

    Google Scholar 

  45. Deboy G, Haeberlen O, Treu M (2017) Perspective of loss mechanisms for silicon and wide band-gap power devices. CPSS Transactions on Power Electronics and Applications 2(2):89–100

    Article  Google Scholar 

  46. Kumar P, Bhowmick B (2020) Source-drain junction engineering Schottky barrier MOSFETs and their mixed mode application. Silicon 12:821–830. https://doi.org/10.1007/s12633-019-00170-0

  47. Deng X, Yang L, Wen Y, Li X, Yang F, Wu H, Cao H, Li J, Chen W, Zhang B (2020) Experimental study and characterization of an ultrahigh-voltage Ni/4H–SiC junction barrier Schottky rectifier with near ideal performances. Superlattices Microstruct 138:106381

    Article  CAS  Google Scholar 

  48. Pala V et al (2014) 10 kV and 15 kV silicon carbide power MOSFETs for next-generation energy conversion and transmission systems. Proc. IEEE ECCE, pp 449–454

    Google Scholar 

  49. Yang T, Wang Y, Yue R (2020) A heterojunction-based SiC power double trench MOSFET with improved switching performance and reverse recovery. Superlattices Microstruct 140:106466

    Article  CAS  Google Scholar 

  50. Jiang H, Wei J, Dai X, Ke M, Zheng C, Deviny I (2016) Silicon carbide split-gate MOSFET with merged Schottky barrier diode and reduced switching loss. 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp 59–62

    Chapter  Google Scholar 

  51. Ruys AJ, Ian G (2021) Crouch, 7 - Siliconized silicon carbide. In: Ruys AJ (ed) Elsevier series on advanced ceramic materials, metal-reinforced ceramics. Woodhead Publishing, pp 211–283, ISBN 9780081028698. https://doi.org/10.1016/B978-0-08-102869-8.00007-0

    Chapter  Google Scholar 

  52. Renz R, Seifert G, Krenkel W (2012) Integration of CMC brake disks in automotive brake systems. Int J Appl Ceram Technol 4:712–724

    Article  Google Scholar 

  53. Studt P (1987) Influence of lubricating oil additives on friction of ceramics under conditions of boundary lubrication. Wear. 115(1–2):185–191

    Article  CAS  Google Scholar 

  54. Surya MS, Prasanthi G (2022) Effect of silicon carbide weight percentage and number of layers on microstructural and mechanical properties of Al7075/SiC functionally graded material. Silicon 14:1339–1348

    Article  CAS  Google Scholar 

  55. Lely A (1955) Darstellung von Einkristallen von Silicium Carbid und Beherrschung von Art und Menge der eingebauten Verunreinigungen. Berichte der Deutschen Keramischen Gesellschaft 8:229

  56. Fuchs F, Soltamov V, Väth S et al (2013) Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci Rep 3:1637. https://doi.org/10.1038/srep01637

    Article  CAS  Google Scholar 

  57. Armstrong K, Das S, Marlino L (2017) Wide bandgap semiconductor opportunities in power electronics. Oak Ridge National Laboratory US Department of Energy

    Google Scholar 

  58. Mookken J, Agrawal B, Liu J (2014) Efficient and compact 50 kW Gen2 SiC device based PV string inverter. Proc. PCIM Europe, pp 780–786

    Google Scholar 

  59. Schwarzer U, Buschhorn S, Vogel K (2014) System benefits for solar inverters using SiC semiconductor modules. Proc PCIM Europe:787–794

  60. Furuhashi M, Tomohisa S, Kuroiwa T, Yamakawa S (2016) Practical applications of SiC-MOSFETs and further developments. Semicond Sci Technol 31:034003–034012

    Article  Google Scholar 

  61. Su M, Chen C, Sharma S, Kikuchi J (2015) Performance and cost considerations for SiC-based HEV traction inverter systems. Proc. IEEE third workshop wide bandgap power devices appl, pp 347–350

    Google Scholar 

  62. Rajagukguk J, Pratiwi RA, Kaewnuam E (2018) Emission gas detector (EGD) for detecting vehicle exhaust based on combined gas sensors. IOP Conf. Series: Journal of Physics: Conf. Series 1120:012020

    Article  Google Scholar 

  63. Casalsa O et al (2012) SiC-based MIS gas sensor for high water vapor environments. Sensors Actuators B 175:60–66

    Article  Google Scholar 

  64. Pascu R et al (2016) A new 4H-SiC hydrogen sensor with oxide ramp termination. Mater Sci Semicond Process 42:268–272

    Article  CAS  Google Scholar 

  65. Sun L, Cheng H, Wu N, Wang B, Wang Y (2018) High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition. RSC Adv 8:13697

    Article  CAS  Google Scholar 

  66. Kumar M, Kumar A, Gautam YK, Chandra R, Goyat MS, Tewari BS, Tewari RK (2020) Influence of SiC thin films thickness on the electrical properties of Pd/SiC thin films for hydrogen gas sensor. Vacuum 182:109750

    Article  CAS  Google Scholar 

  67. Kumar A, Kumar A, Chandra R (2018) Fabrication of porous silicon filled Pd/SiC nanocauliflower thin films for high performance H2 gas sensor. Sens Actuators B Chem 264:10–19

    Article  CAS  Google Scholar 

  68. Singh N, Kumar A, Kaur D (2018) Hydrogen gas sensing properties of platinum decorated silicon carbide (Pt/SiC) nanoballs. Sens Actuators B Chem 262:162–170

    Article  CAS  Google Scholar 

  69. Gaiardo A, Fabbri B, Giberti A, Valt M, Gherardi S, Guidi V, Malagù C, Bellutti P, Pepponi G, Casotti D, Cruciani G, Zonta G, Landini N, Barozzi M, Morandi S, Vanzetti L, Canteri R, Della Ciana M, Migliori A, Demenev E (2020) Tunable formation of nanostructured SiC/SiOC core-shell for selective detection of SO2. Sens Actuators B Chem 305:127485

    Article  CAS  Google Scholar 

  70. Mahdavifar Z, Abbasi N, Shakerzadeh E (2013) A comparative theoretical study of CO2 sensing using inorganic AlN, BN and SiC single walled nanotubes. Sens Actuators B Chem 185:512–522

    Article  CAS  Google Scholar 

  71. Zhao J-x, Ding Y-h (2008) Silicon carbide nanotubes functionalized by transition metal atoms: a density-functional study. J Phys Chem C 112(7):2558–2564

    Article  CAS  Google Scholar 

  72. Pham-Huu C, Keller N, Ehret G, Ledoux MJ (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200(2):400–410

    Article  CAS  Google Scholar 

  73. Singh RS, Solanki A (2016) Hydrogen adsorption in metal-decorated silicon carbide nanotubes. Chem Phys Lett 660:155–159

    Article  CAS  Google Scholar 

  74. Balakrishnan V, Dinh T, Phan H-P, Dao DV, Nguyen N-T (2018) Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology. Sensors Actuators A Phys 279:293–305

    Article  CAS  Google Scholar 

  75. Huang X, Zhang X (2020) Investigating the advanced characteristics of SiC based piezoresistive pressure sensors, materials today. Communications 25:101493

    CAS  Google Scholar 

  76. Nguyen T-K, Phan H-P, Dinh T, Dowling KM, Foisal ARM, Senesky DG, Nguyen N-T, Dao DV (2018) Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures. Mater Des 156:441–445

    Article  CAS  Google Scholar 

  77. Lloyd Spetz A, Baranzahi A, Tobias P, Lundstrom I (1997) High temperature sensors based on metal–insulator–silicon carbide devices. Phys Status Solidi 162(1):493–511

    Article  CAS  Google Scholar 

  78. Schalwig J, Kreisl P, Ahlers S, Muller G (2002) Response mechanism of SiC-based MOS field-effect gas sensors. IEEE Sensor J 2(5):394–402

    Article  CAS  Google Scholar 

  79. Fawcett TJ, Wolan JT, Myers RL, Walker J, Saddow SE (2004) Wide-range (0.33%– 100%) 3C–SiC resistive hydrogen gas sensor development. Appl Phys Lett 85(3):416–418

    Article  CAS  Google Scholar 

  80. Doi T, Takeuchi W, Jin Y, Kokubun H, Yasuhara S, Nakatsuka O, Zaima S (2017) Formation of SiC thin films by chemical vapor deposition with vinylsilane precursor. Jpn J. Appl Phys 57(1S):01AE08

    Article  Google Scholar 

  81. Kumar M, Chandra R, Goyat MS, Mishra R, Tiwari RK, Saxena AK (2015) Structural and magnetic properties of pulsed laser deposited Fe–SiC thin films. Thin Solid Films 579:64–67

    Article  CAS  Google Scholar 

  82. Xu M, Girish YR, Rakesh KP, Wu P, Manukumar HM, Byrappa SM, Udayabhanu KB (2021) Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications. Mater Today Commun 28:102533

    Article  CAS  Google Scholar 

  83. Yakimova R, Petoral RM, Yazdi GR, Vahlberg C, Lloyd Spetz A, Uvdal K (2007) Surface functionalization and biomedical applications based on SiC. J Phys D Appl Phys 40:6435

    Article  CAS  Google Scholar 

  84. Li X, Wang X, Bondokov R, Morris J, An YH, Sudarshan TS (2004) Micro/nanoscale mechanical and tribological characterization of SiC for orthopedic applications. J Biomed Mater Res B Appl Biomater 72:353–361

    Google Scholar 

  85. Mahmoodi M, Ghazanfari L (2013) Silicon carbide: a biocompatible semiconductor used in advanced biosensors and BioMEMS/NEMS, Ch.15. Physics and Technology of Silicon Carbide. Intech OpenScience

    Google Scholar 

  86. Schlecht MT, Preu S, Malzer S et al (2019) An efficient Terahertz rectifier on the graphene/SiC materials platform. Sci Rep 9:11205

    Article  Google Scholar 

  87. Kumar P (2022) Performance analysis of double gate dielectric modulation in Schottky FET as biomolecule sensor. Silicon 14:4767–4773. https://doi.org/10.1007/s12633-021-01197-y

  88. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307

    Article  CAS  Google Scholar 

  89. Nabki F, Dusatko TA, Vengallatore S, El-Gamal MN (2011) Low-stress CMOS-compatible silicon carbide surface-micromachining technology-part I: process development and characterization. J Microelectromech Syst 20:720–729

    Article  CAS  Google Scholar 

  90. Barrios CA, Thomas CI, Spencer M, Lipson M (2003) 3C-SiC modulator for high-speed integrated photonics. Materials Research Society Symposium – Proceedings, vol 799, pp 158–162 211

    Google Scholar 

  91. Powell K, Li L, Shams-Ansari A, Wang J, Meng D, Sinclair N, Deng J, Lončar M, Yi X Submitted. Integrated silicon carbide modulator for CMOS photonics. Research Square. https://doi.org/10.21203/rs.3.rs-178354/v1

  92. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97–105

    Article  CAS  Google Scholar 

  93. Lewis RA (2014) A review of terahertz sources. J Phys D Appl Phys 47

  94. Manikandan E, Sreeja BS, Radha S, Bathe RN (2018) Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance. Mater Lett 229:320–323

    Article  CAS  Google Scholar 

  95. Dhillon SS et al (2017) The 2017 terahertz science and technology roadmap. J Phys D Appl Phys 50

  96. True J, Xi C, Jessurun N, Ahi K, Asadizanjani N (2021) Review of THz-based semiconductor assurance. Opt Eng 60:1–52

    Article  Google Scholar 

  97. Mukhopadhyay SJ, Mukherjee P, Acharyya A, Mitra M (2020a) Terahertz radiators based on silicon carbide avalanche transit time sources—part I: large-signal characteristics. In: Biswas A, Banerjee A, Acharyya A, Inokawa H, Roy J (eds) Emerging trends in terahertz solid-state physics and devices. Springer, Singapore. https://doi.org/10.1007/978-981-15-3235-1_2

    Chapter  Google Scholar 

  98. Mukhopadhyay SJ, Mukherjee P, Acharyya A, Mitra M (2020b) Terahertz radiators based on silicon carbide avalanche transit time sources—part II: avalanche noise characteristics. In: Biswas A, Banerjee A, Acharyya A, Inokawa H, Roy J (eds) Emerging trends in terahertz solid-state physics and devices. Springer, Singapore. https://doi.org/10.1007/978-981-15-3235-1_3

    Chapter  Google Scholar 

  99. Strait JH et al (2009) Emission of terahertz radiation from SiC. Appl Phys Lett 95:2009–2011

    Article  Google Scholar 

  100. Kaci S, Mansouri H, Bozetine I, Keffous A, Guerbous L, Siahmed Y, Aissiou S (2017) Elaboration and characterization of luminescent porous SiC microparticles/poly vinyl alcohol thin films. Opt Mater 64:75–81

    Article  CAS  Google Scholar 

  101. Kaci S, Rahmoune R, Kezzoula F, Boudiaf Y, Keffous A, Manseri A, Menari H, Cheraga H, Guerbous L, Belkacem Y, Chalal R, Bozetine I, Boukezzata A, Talbi L, Benfadel K, Ouadfel M-A, Ouadah Y (2018) Impact of porous SiC-doped PVA based LDS layer on electrical parameters of Si solar cells. Optic Mater 80:225

    Article  CAS  Google Scholar 

  102. Benfadel K, Kaci S, Talbi L et al (2020) Properties of SiC-based luminescent composite thin film as light-harvesting material. Russ J Phys Chem 94:2844–2852

    Article  CAS  Google Scholar 

  103. Benfadel K, Kaci S, Hamidouche F et al (2021) Development of an antireflection layer using a LDS based on β-SiC nanoparticles. Silicon 13:1751–1763

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

First author has done the literature survey and prepared the manuscript.

Second author has significantly contributed in the introduction section of the manuscript.

Third author has contributed towards the gas sensing application.

Fourth author has prepared the THz application.

Corresponding author has given valuable suggestions and done the overall correction of the manuscript.

Corresponding author

Correspondence to Lucky Agarwal.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors have no conflict of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

E, P., B, P.K., B, C. et al. A Comprehensive Review of Recent Progress, Prospect and Challenges of Silicon Carbide and its Applications. Silicon 14, 12887–12900 (2022). https://doi.org/10.1007/s12633-022-01998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01998-9

Keywords

Navigation