Skip to main content
Log in

Performance Evaluation of FinFET Device Under Nanometer Regime for Ultra-low Power Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

For Ultra Large-Scale Integration (ULSI), the most promising device is multi gate Fin Field Effect Transistor (FinFET), as it offers reduced leakage current and better short channel performance. Modern design methodologies for 5 nm node NMOS FinFET transistors are examined in this paper to realize low power and low off state current (Ioff) needs. Changing the punch through stop implant dose, source and drain junction placement, gate work function, Drain Induced Barrier Lowering (DIBL), and sub-threshold slope in combination with cut-in voltage yields the Ioff and Ion (on state current). Source drain expansion design, Fin doping concentration, and gate work function selection are exploited such that a FinFET device provides the requirements of low power and ultra-low power transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No supplementary materials.

References

  1. Park J-T, Colinge J-P (2002) Multiple-gate SOI MOSFETs: Device design guidelines. IEEE Trans Electron Devices 49(12):2222–2229

    Article  Google Scholar 

  2. Zhang W, Fossum JG, Mathew L, Du Y (2005) Physical insights regarding design and performance of independent-gate FinFETs. IEEE Trans Electron Devices 52(10):2198–2206

    Article  Google Scholar 

  3. Tang X, De VK, Meindl JD (1997) Intrinsic MOSFET parameter fluctuations due to random dopant placement. IEEE Trans Very Large Scale Integr VLSI Syst 5(4), 369–376

  4. [Online]. Available: http://www.eetimes.com/electronics-news/4373195/Intel-FinFETs-shape-revealed

  5. Abd El Hamid H, Guitar JR, Kilchytska V, Flandre D, Iniguez B (2007) A 3-D analytical physically based model for the sub threshold swing in undoped trigate FinFETs. IEEE Trans Electron Devices 54(9):2487–2496

    Article  Google Scholar 

  6. Tsormpatzoglou A, Dimitriadis CA, Clerc R, Pananakakis G, Ghibaudo G (2008) Semi analytical modeling of short-channel effects in lightly doped silicon trigate MOSFETs. IEEE Trans Electron Devices 55(10):2623–2631

    Article  CAS  Google Scholar 

  7. Kloes A, Weidemann M, Goebel D, Bosworth BT (2008) Three-dimensional closed-form model for potential barrier in undoped FinFETs resulting in analytical equations for VT and subcut-in slope. IEEE Trans Electron Devices 55(12):3467–3475

    Article  CAS  Google Scholar 

  8. Yesayan A, Pregaldiny F, Chevillon N, Lallement C, Sallese JM (2011) Physics-based compact model for ultra-scaled FinFETs. Solid-State Electron 62(1):165–173

    Article  CAS  Google Scholar 

  9. Song J, Yu B, Yuan Y, Taur Y (2009) A review on compact modelingof multiple-gate MOSFETs. IEEE Trans Circuits Syst I Reg Pap 56(8):1858–1869

    Article  Google Scholar 

  10. Li Y, Hwang C-H (2007) Effect of fin angle on electrical characteristics of nanoscale round-top-gate bulk FinFETs. IEEE Trans Electron Devices 54(12):3426–3429

    Article  CAS  Google Scholar 

  11. Dauge F, Pretet J, Cristoloveanu S, Vandooren A, Mathew L, Jomaah J et al (2004) Coupling effects and channels separation in Fin-FETs. Solid-State Electron 48(4):535–542

    Article  CAS  Google Scholar 

  12. Mishra K, Somra N, Sawhney RS (2015) Simulation of n-FinFET performance reliance on varying combinations of gate material and oxide. Commun Appl Electron 2(7):12–16

    Article  Google Scholar 

  13. Prakash MD, Nelam BG, Ahmadsaidulu S, Navaneetha A, Panigrahy AK (2021) Performance Analysis of ion-sensitive field effect transistor with various oxide materials for biomedical applications. Silicon. https://doi.org/10.1007/s12633-021-01413-9

    Article  PubMed Central  Google Scholar 

  14. Prakash MD, Krsihna BV, Satyanarayana BVV, Vignesh NA, Panigrahy AK, Ahmadsaidulu S (2021) A study of an ultrasensitive label free silicon nanowire FET biosensor for cardiac Troponin I detection. Silicon. https://doi.org/10.1007/s12633-021-01352-5

    Article  PubMed Central  Google Scholar 

  15. Meriga C, Ponnuri RT, Satyanarayana BVV, Gudivada AAK, Panigrahy AK, Prakash MD (2021) A novel teeth junction less gate all around FET for improving electrical characteristics. Silicon. https://doi.org/10.1007/s12633-021-00983-y

  16. Prakash MD, Nihal SL, Ahmadsaidulu S, Swain R, Panigrahy AK (2022) Design and modelling of highly sensitive glucose biosensor for Lab-on-chip applications. Silicon. https://doi.org/10.1007/s12633-021-01543-0

    Article  PubMed Central  Google Scholar 

  17. Giacomini R, Martino JA (2008) Trapezoidal cross-sectional influence on FinFET cut-in voltage and corner effects. J Electrochem Soc 155(4):H213–H217

    Article  CAS  Google Scholar 

  18. Wong HS, White PCH, Krutsick TJ, Booth RV (1987) Modeling of transconductance degradation and extraction of cut-in voltage in thin oxide MOSFET’s. Solid-State Electron 30(9):953–968

    Article  Google Scholar 

  19. Chevillon N, Sallese J-M, Lallement C, Pregaldiny F, Madec M, Sedlmeir J et al (2012) Generalization of the concept of equivalent thickness and capacitance to multigate MOSFETs modelling. IEEE Trans Electron Devices 59(1):60–71

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Velalar College of Engineering and Technology, Erode, Tamil Nadu-638012. India for their cooperation and support during this research work.

Author information

Authors and Affiliations

Authors

Contributions

M Parimala Devi, and Velnath Ravanan: Conceptualization; M Parimala Devi, and Velnath Ravanan: investigation; M Parimala Devi, Velnath Ravanan, S Kanithan, and N A Vignesh : resources; M Parimala Devi, Velnath Ravanan, S Kanithan, and N A Vignesh: data curation; M Parimala Devi, Velnath Ravanan, S Kanithan, and N A Vignesh : writing—original draft preparation; M Parimala Devi, Velnath Ravanan, S Kanithan, and N A Vignesh: writing—review and editing; M Parimala Devi, Velnath Ravanan, S Kanithan, and N A Vignesh: visualization; M Parimala Devi, and Velnath Ravanan: supervision.

Corresponding author

Correspondence to M. Parimala Devi.

Ethics declarations

Consent to Participate

Yes.

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human or animal subjects.

Consent for Publication

Author(s): M Parimala Devi.

Author’s signature:

figure a

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, M.P., Ravanan, V., Kanithan, S. et al. Performance Evaluation of FinFET Device Under Nanometer Regime for Ultra-low Power Applications. Silicon 14, 5745–5750 (2022). https://doi.org/10.1007/s12633-022-01772-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01772-x

Keywords

Navigation