Skip to main content
Log in

3D Investigation of 8-nm Tapered n-FinFET Model

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The miniaturization has become a key word for advanced integrated circuits over the last few years. It is within this context that the fin field effect transistor (FinFET) has appeared as a suitable technology to enable in every single chip to contain more million transistors. This paper proposes a numerical investigation of the influence of the gate length, drain/source doping concentrations, and gate work function on the output properties of 3D tapered FinFET technology by using Silvaco TCAD tools. The simulation results show that decreasing the gate length from 14 nm to 6 nm, the leakage current enhances dramatically and increasing the metal gate work function from 5.33 eV to 5.70 eV has affected transistor response time and the on-current, but in parallel, the leakage current increase affecting the transistor efficiency. The subthreshold slope (SS) and transconductance (gm) are quite constant for all work function levels. This variation leads to determine the optimal metal gate work function of about 4.50 eV. The paper reports recent findings and some guidelines to achieve the following results: a threshold voltage (Vth) of 0.216 V, a subthreshold slope of 68.54 mV/dec, a transconductance of 315.7 μA/V, an on-current (Ion) of 103.75 μA, and an off-current (Ioff) of 2.51 nA with a fixed gate length (Lg) of 8 nm, a top fin-width (FWT) of 3 nm, a bottom fin-width (FWB) of 6 nm, and a fin-height (FH) of 50 nm, which are close to those reported in other research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saremi M, Afzali-Kusha A, Mohammadi S (2012). Microelectron Eng 95:74–82

    Article  CAS  Google Scholar 

  2. Crupi G, Schreurs DMM-P, Caddemi A, Angelov I, Homayouni M, Raffo A, Vannini G, Parvais B (2009). Microelectron Eng 86:2283–2289

    Article  CAS  Google Scholar 

  3. Lakshmi B, Srinivasan R (2017). Int J Numer Model 30:e2193

    Article  Google Scholar 

  4. Bughio AM, Donati Guerrieri S, Bonani F, Ghione G (2018). Int J Numer Model 31:e2285

    Article  Google Scholar 

  5. J P Collinge Springer Berlin, p 350 (2008)

  6. Boukortt N, Hadri B, Patanè S, Caddemi A, Crupi G (2016). Silicon 8:497

    Article  CAS  Google Scholar 

  7. Crupi G, Schreurs DMM-P, Caddemi A (2017). Electronics 6:1–10

    Article  Google Scholar 

  8. S Wan Muhamad Hatta et al. (2014) IEEE-ICSE2014

  9. https://www.extremetech.com/computing/250936-globalfoundries-announces-early-7nm-availability-40-improvedperformance-14nm-finfet. Accessed 15 June 2017

  10. Ko MD (2013). IEEE Trans Electron Devices 60:2721

    Article  Google Scholar 

  11. Kurniawan ED et al (2018) Microelectron Reliab 83, p 254

    Google Scholar 

  12. Boukortt N, Hadri B, Patanè S, Caddemi A, Crupi G (2017). Silicon 9

  13. Raskin JP (2013). Int J Numer Model 27(707)

  14. Ortiz RP, Facchetti A, Marks T (2010). J Chem Rev 110:205

    Article  CAS  Google Scholar 

  15. N Boukortt, B Hadri, S Patanè (2016) IJCA 139 0975

  16. K Akarvardar et al. (2007) Microelectron Reliab 47 2065

    Google Scholar 

  17. (2016) Atlas User's manual device simulation software Santa Clara: Silvaco International. Silvaco International

  18. N Stem (2001) M Cid Mat Res 2 143

  19. Shaker A, Zekry A (2010). J Electron Devices:293

  20. Xu W, Yin H, Ma X, Hong P, Xu M, Meng L (2015). Nanoscale Res Lett 10:1

    Article  Google Scholar 

  21. Boukortt N, Hadri B, Caddemi A, Crupi G, Patane S (2015). Trans Electr Electron Mater 16:2

    Article  Google Scholar 

  22. Mohapatra SK, Pradhan KP (2013). Trans Electr Electron Mater 14:291

    Article  Google Scholar 

  23. E Baravelli, L Marchi, N Speciale (2009) Solid state Electron 53 1303

    Google Scholar 

  24. Huang X et al (2001). IEEE Trans Electron Devices 48:880

    Article  Google Scholar 

  25. Sharma D, Vishvakarma SK (2015). Microelectron J 46:731

    Article  CAS  Google Scholar 

  26. K P Pradhan et al. (2016) Superlattices Microstruct 90 191

    Google Scholar 

  27. Nam H, Shin C (2014). IEEE Trans Electron Devices 61:2007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Semiconductor Laboratory (GE01/08), Kuwait University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Boukortt.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukortt, N., Patanè, S. & Crupi, G. 3D Investigation of 8-nm Tapered n-FinFET Model. Silicon 12, 1585–1591 (2020). https://doi.org/10.1007/s12633-019-00253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00253-y

Keywords

Navigation