Skip to main content
Log in

Enhanced Performance of Hydrogen Peroxide Modified Pozzolan-Based Geopolymer for Abatement of Methylene Blue from Aqueous Medium

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Pozzolan-based eco-adsorbents were synthesized by geopolymerization with addition of hydrogen peroxide (H2O2) with mass ratios 0% (GP0) and 1% (GP1) and the products used to sorb cationic methylene blue (MB) dye from water. The chemical composition, textural properties, mineral composition, surface functional groups, as well as morphology and internal structure of these samples were determined by the X-ray fluorescence, adsorption of nitrogen by the B.E.T (Bruamer Emmet Teller) method, X-ray diffraction, Fourier Transformed Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. The effects of contact time, dye initial concentration, adsorbent dosage, pH and temperature were examined and are herein reported. Incorporation of 1% H2O2 increased the specific surface area from 4.344 to 5.610 m2/g representing ~29% increase in surface area. This translated to an increase in the MB adsorption capacity by 15 orders of magnitude from 24.4 to 366.2 mg/g for GP0 and GP1, respectively. The adsorption rates of methylene blue onto the two geopolymers were best described by the pseudo-second order kinetic model. The adsorption equilibrium data were best described by the Sips and Freundlich isotherms models for GP0 and GP1, respectively. Thermodynamically, it was determined that the adsorption of methylene blue onto GP0 and GP1 is a physical and endothermic process. The results show that incorporation of a low amount of hydrogen peroxide into pozzolan-based geopolymers increases their adsorption capacity for methylene blue dye stupendously while preserving the surface chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Fatima Zohra Choumane, (2015) Elimination des métaux lourds et pesticides en solution aqueuse par des matrices argileuses, Thèse de Doctorat, Chimie de l’environnement

  2. Brown MA, De Vito SC (2009) Predicting azo dye toxicity predicting azo dye toxicity. Crit Rev Environ Sci Technol (June 2013):37–41. https://doi.org/10.1080/10643389309388453

  3. Dipa G, Bhattacharyya KG (2002) Adsorption of methylene blue on kaolinite. Appl Clay Sci 20:295–300

  4. Alvares ABC, Dlaper C, Parsons SA (2013) Partial oxidation by ozone to remove recalcitrance from wastewaters – a review. Environ Technol 22:409–427

    Article  Google Scholar 

  5. Badawi MA, Negm NA, Abou Kana MTH, Hefni HH, Abdel Moneem MM (2017) Adsorption of aluminum and Lead from wastewater by chitosan-tannic acid modified biopolymers: isotherms, kinetics, thermodynamics and process mechanism. Int J Biol Macromol 99:465–476. https://doi.org/10.1016/j.ijbiomac.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  6. Sharma P, Kaur H, Sharma M, Sahore V (2011) A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste 151–195 183:151–195. https://doi.org/10.1007/s10661-011-1914-0

  7. US Department of the interior and US Geological Survey (2010) Minerals yearbook, metals and minerals, vol 1. Government Printing Office, Washington DC

    Google Scholar 

  8. Billong N, Melo UC, Njopwouo N, Louvet F, Bonnet JP (2013) Physicochemical characteristics of Some Cameroonian pozzolans for use in sustainable cement like materials. Mater Sci Appl 4:14–21

    CAS  Google Scholar 

  9. Wamba AGN, Lima EC, Ndi SK, Thue PS, Kayem JG, Rodembusch FS, dos Reis GS, de Alencar WS (2017) Synthesis of grafted natural pozzolan with 3 aminopropyltriethoxysilane: preparation, characterization, and application for removal of brilliant green 1 and reactive black 5 from aqueous solutions. Environ Sci Pollut Res 24(27):21807–21820. https://doi.org/10.1007/s11356-017-9825-4

    Article  CAS  Google Scholar 

  10. Kofa GP, NdiKoungou S, Kayem GJ, Kamga R (2015) Adsorption of arsenic by natural Pozzolan in a fixed bed: determination of operating conditions and modeling. Journal of Water Process Engineering 6:166–173. https://doi.org/10.1016/j.jwpe.2015.04.006

    Article  Google Scholar 

  11. Fumba G, Essomba JS, Tagne GM, Nsami JN, Bélibi PDB, Mbadcam JK (2014) Equilibrium and kinetic adsorption studies of methyl Orange from aqueous solutions using kaolinite, Metakaolinite and activated Geopolymer as low cost adsorbents. Journal of Academia and Industrial Research (JAIR) 3:156–163

    Google Scholar 

  12. Novais RM, Ascensão G, Tobaldi DM, Seabra MP, Labrincha JA (2018) Biomass Fly ash geopolymer monoliths for effective methylene blue removal from wastewaters. J Clean Prod 171:783794

    Article  Google Scholar 

  13. Marouane E, Saliha A, Mohammed E, Taibi M (2019) Preparation, characterization, and application of Metakaolin-based Geopolymer for removal of methylene blue from aqueous solution. J Chem 2019:1–14. https://doi.org/10.1155/2019/4212901

    Article  CAS  Google Scholar 

  14. Bai C, Colombo P (2018) Processing, properties and applications of highly porous Geopolymers: a review. Ceram Int 44(14):16103–16118. https://doi.org/10.1016/j.ceramint.2018.05.219

    Article  CAS  Google Scholar 

  15. Singhal A, Gangwar BP, Gayathry JM (2017) CTAB modified large surface area nanoporous geopolymer with high adsorption capacity for copper ion removal. Appl Clay Sci 150:106–114. https://doi.org/10.1016/j.clay.2017.09.013

    Article  CAS  Google Scholar 

  16. Sarkar C, Basu JK, Samanta AN (2018) Experimental and kinetic study of fluoride adsorption by Ni and Zn modified LD slag based Geopolymer. Chemical Engineering Research and Design, S0263876218306221–. doi:https://doi.org/10.1016/j.cherd.2018.12.006

  17. Runtti H, Luukkonen T, Niskanen M, Tuomikoski S, Kangas T, Tynjälä P, Tolonen E-T, Sarkkinen M, Kemppainen K, Rämö J, Lassi U (2016) Sulphate removal over barium-modified blast-furnace-slag geopolymer. J Hazardous Mater, S0304389416305568. https://doi.org/10.1016/j.jhazmat.2016.06.001

  18. Yuanyuan G, Xuemin C, Kong Y, Zhili L, He Y, Qianqian Z (2014) Porous geopolymeric spheres for removal of Cu (II) from aqueous solution: synthesis and evaluation “Ac Ce p Te d Cr T.”. Journal of Hazardous Materials (Ii) 283:244–251. https://doi.org/10.1016/j.jhazmat.2014.09.038

    Article  CAS  Google Scholar 

  19. Y. Liu, C. Yan, Z. Zhang, Y. Gong, H. Wang, and X. Qiu, .(2016). A facile method for preparation of floatable and permeable fly ash-based geopolymer block. Mater Lett 185:370–373 “crossmark,” Mater Lett, vol. 185, no. July, pp. 370–373 doi: https://doi.org/10.1016/j.matlet.2016.09.044

  20. Sido-Pabyam M, Gueye M, Blin J, Some E (2009) Valorisation de résidus de Biomasse en Charbons actifs – Tests d’efficacité sur des bactéries et dérivés de pesticides. Revue Sud Sciences et Technologies 17:65–73

    Google Scholar 

  21. Karadag D (2007) Modeling the Mechanism, Equilibrium and Kinetics for the Adsorption of Acid Orange 8 onto Surfactant-Modified Clinoptilolite. Appl Nonlinear Regression Anal 74:659–664. https://doi.org/10.1016/j.dyepig.2006.04.009

    Article  CAS  Google Scholar 

  22. Davidovits J (2008) Geopolymer chemistry & applications. Geopolymer Institute, Saint-Quentin

    Google Scholar 

  23. Siyal AA, Shamsuddin MR, Khan MI, Rabat E, Zulfiqar M, Man Z, Siame J, Azizli KA (2018) A review on Geopolymers as emerging materials for the. J Environ Manag 224:327–339. https://doi.org/10.1016/j.jenvman.2018.07.046

    Article  CAS  Google Scholar 

  24. Sangwichien C, Aranovich GL, Donohue MD (2002) Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloids Surf A Physicochem Eng Asp 206:313–320

  25. Khan MI, Min TK, Azizli K, Sufian S, Ullah H, Man Z (2015) Effective removal of methylene blue from water using phosphoric acid based geopolymers: synthesis, characterizations and adsorption studies. RSC Adv 5(75):61410–61420. https://doi.org/10.1039/c5ra08255b

    Article  CAS  Google Scholar 

  26. Tahir SS, Rauf N (2006) Removal of cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere.63, 1842-1848. Ceram Int 44(14):16103–16118. https://doi.org/10.1016/j.ceramint.2018.05.219

    Article  CAS  Google Scholar 

  27. Panias D, Giannopoulou IP, Perraki T (2007) Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf A Physicochem Eng Asp 301:246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064

  28. Maragkos I, Giannopoulou IP, Panias D (2009) Synthesis of Ferronickel Slag-Based Geopolymers. 22:196–203. doi: https://doi.org/10.1016/j.mineng.2008.07.003

  29. Rattanasak U, Chindaprasirt P (2009) Influence of NaOH solution on the synthesis of Fly ash Geopolymer. Miner Eng 22(12):1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022

    Article  CAS  Google Scholar 

  30. Tome S, Etoh M, Etame J, Kumar S (2020) Improved reactivity of volcanic ash using municipal solid incinerator Fly ash for alkali-activated cement synthesis. Waste and Biomass Valoriz 11(6):3035–3044. https://doi.org/10.1007/s12649-019-00604-1

    Article  CAS  Google Scholar 

  31. Tome S, Hermann DT, Shikuku VO, Otieno S (2021) Synthesis, characterization and application of acid and alkaline activated volcanic ash-based geopolymers for adsorptive remotion of cationic and anionic dyes from water. Ceram Int xxx(xxxx):1–9. https://doi.org/10.1016/j.ceramint.2021.04.097

  32. Kamseu E, Nait-ali B, Bignozzi MC, Leonelli C, Rossignol S, Smith DS (2012) Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J Eur Ceram Soc 32:1593–1603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030

  33. Karim AB, Mounir B, Hachkar M, Bakasse M, Yaacoubi A (2010) Élimination du colorant basique « Bleu de Méthylène » en solution aqueuse par l’argile de Safi. Revue Des Sciences de l’eau 23(4):375–388. https://doi.org/10.7202/045099ar

    Article  Google Scholar 

  34. Dotto GL, Santos JMN, Rodrigues IL, Rosa R, Pavan FA, Lima EC (2015) Adsorption of Methylene Blue by Ultrasonic Surface Modified Chitin. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2015.01.046

  35. Shikuku VO, Kowenje CO, Kengara FO (2018) Errors in Parameters Estimation Using Linearized Adsorption Isotherms : Sulfadimethoxine Adsorption onto Kaolinite Clay 23(4), 1–6. https://doi.org/10.9734/CSJI/2018/44087

  36. Yao C, Chen T (2019) An improved regression method for kinetics of adsorption from aqueous solutions. J Water Process Eng 31(May):100840. https://doi.org/10.1016/j.jwpe.2019.100840

    Article  Google Scholar 

  37. McKay G, Otterburn MS, Aga JA (1985) Fuller’s earth and fired clay as adsorbents for dyestuffs. Water Air Soil Pollut 24:307–322

    Article  CAS  Google Scholar 

  38. Ofomaja AE (2008) Sorptive removal of methylene blue from aqueous solution using palm kernel fibre : effect of fibre dose. Biochem Eng J 40:8–18. https://doi.org/10.1016/j.bej.2007.11.028

  39. Asseng MC, Dzoujo HT, Dina DDJ, Etoh MA, Tchakounte AN, Nsami JN (2020) Batch Studies for the Removal of a Hazardous Azo Dye Methyl Orange from Water through Adsorption on Regenerated Activated Carbons. J Mater Sci Eng B 10(3):109–123. https://doi.org/10.17265/2161-6221/2020.5-6.003

    Article  CAS  Google Scholar 

  40. Itodo AU, Itodo HU (2010) Sorption energies estimation using Dubinin Radushkevich and Temkin adsorption isotherms. Life Sci 7:31–39

    Google Scholar 

  41. Jia LIU, Wang H-l, Chun-xin LÜ, Han-fei LIU, Zhi-xin GUO, Chun-li K (2013) Water through modified diatomite. Chem Res Chin Univ 29(3):445–448. https://doi.org/10.1007/s40242-013-2504-1

  42. Temkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physiochim. URSS 12:327–356

    CAS  Google Scholar 

  43. Freundlich H (1906) on adsorption in solution. Z Physik Chem 57:385–471

    CAS  Google Scholar 

  44. Sips R (1948) on the structure of a catalyst surface. J Chem Phys 16:490

    Article  CAS  Google Scholar 

  45. Anagho S, Tchuifon R, Ndifor-Angwafor G, Ndi J, Ketcha J, Nchare M (2013) Nickel adsorption from aqueous solution onto kaolinite and metakaolinite: kinetic and equilibrium studies. Int J Chem 4:1–7

    Google Scholar 

  46. Shikuku VO, Kimosop J (2020) Efficient removal of sulfamethoxazole onto sugarcane bagasse-derived biochar: two and three-parameter isotherms, kinetics and thermodynamics. S Afr J Chem 73:111–119

    CAS  Google Scholar 

  47. Sarkar C, Basu JK, Samanta AN (2018) Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for zinc (II) removal. Adv Powder Technol, no February: 1–11. https://doi.org/10.1016/j.apt.2018.02.005

  48. Maragkos I, Giannopoulou IP, Panias D (2009) Synthesis of ferronickel slag-based geopolymers. Miner Eng 22:196–203. https://doi.org/10.1016/j.mineng.2008.07.003

Download references

Acknowledgements

We thank Institute of Inorganic chemistry and structural in Dusseldorf (Germany) for the characterization of raw materials and geopolymers samples.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

David Dina, Sylvain Tome: Validation, Methodology, Writing - review & editing,

Visualization, original draft. Dzoujo T. Hermann, Jean T. Tchuigwa: Conceptualization, Methodology, Investigation, writing - original draft, resources. Victor O. Shikuku: Validation, Writing - review & editing. Alex Spieß: Validation, Writing - review & editing, Marie-Annie Etoh: Writing - review & editing, Visualization. David Dina, Marie-Annie Etoh, Christoph Janiak: Resources, Supervision.

Corresponding authors

Correspondence to Sylvain Tome or David Daniel Joh Dina.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3.60 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermann, D.T., Tome, S., Shikuku, V.O. et al. Enhanced Performance of Hydrogen Peroxide Modified Pozzolan-Based Geopolymer for Abatement of Methylene Blue from Aqueous Medium. Silicon 14, 5191–5206 (2022). https://doi.org/10.1007/s12633-021-01264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01264-4

Keywords

Navigation