Skip to main content
Log in

Virtually Doped Schottky Buried Metal Layer Planar Junctionless FET for SCE Suppression at sub-28nm Technology Nodes

Design, Simulation and Performance Investigation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Herein we introduce and investigate a new architectural design strategy for planar single gate field effect transistors (SG-FETs) that delivers advantages from all fronts of design, fabrication and performance perspectives. The amalgamation of schottky buried metal layer (BML) and charge plasma (CP) mechanism of doping in planar single gate architecture yields a novel type of FET called as CP-BML FET. Owing to the schottky BML induced depletion region created on the bottom side of device layer reduces effective device layer thickness (TSi) suppressing short channel effects (SCEs) including drain induced barrier lowering (DIBL) and threshold voltage roll-off. The proposed FET has been analyzed for DC and RF performance figure of merits (FOMs) and compared to counter part state of the art technologies with reference to ITRS performance projections. The proposed FET is also investigated the performance FOMs on for criticality of physical parameters including gate length (Lg), device layer thickness (TSi), BML workfunction (ϕBML). The ION and IOFF for proposed device at Lg = 20nm read at 730μ A/μ m and 7 × 10− 2 pA/μ m respectively. RF performance analysis reveal transition frequency (ft) of 390 GHz with SS \(\simeq \ \text {75mV/dec}\) coherent with ITRS performance projections. It is found that ultra scaled (7 nm) proposed device exhibits intrinsic delay τ of 0.6 ps which is superior to ITRS projections of 1.71 ps at 28 nm technology node. The proposed device yields Pdyn of 0.248 fJ/μ m at Lg= 7nm implicating it to be potential candidate for low power with high performance application requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no linked research data for this submission.

References

  1. Sheu B, Olstein K (2015) . IEEE Solid-State Circuits Magazine 7(2):67. https://doi.org/10.1109/MSSC.2015.2418472

    Article  Google Scholar 

  2. Ávila Herrera F, Hirano Y, Miura-Mattausch M, Iizuka T, Kikuchihara H, Mattausch HJ, Ito A (2019) . IEEE Trans Electron Devices 66(9):3726. https://doi.org/10.1109/TED.2019.2931749

    Article  Google Scholar 

  3. Jaiswal N, Kranti A (2018) . IEEE Trans Electron Devices 65(9):3669. https://doi.org/10.1109/TED.2018.2856839

    Article  CAS  Google Scholar 

  4. Angelov GV, Nikolov DN, Hristov MH (2019) . J Electr Comput Eng 2019:4792461. https://doi.org/10.1155/2019/4792461

    Google Scholar 

  5. Gargini P (2017) .. In: 2017 Fifth Berkeley symposium on energy efficient electronic systems steep transistors workshop (E3S). https://doi.org/10.1109/E3S.2017.8246153, pp 1–62

  6. Lu W-Y, Taur Y (2006) . IEEE Trans Electron Devices 53 (5):1137. https://doi.org/10.1109/TED.2006.871879

    Article  Google Scholar 

  7. Pacheco-Sanchez A, Loroch D, Mothes S, Schröter M, Claus M (2016) .. In: 2016 International conference on simulation of semiconductor processes and devices (SISPAD). https://doi.org/10.1109/SISPAD.2016.7605201, pp 277–280

  8. Sahay S, Kumar MJ (2017) . IEEE Trans Electron Devices 64(6):2604. https://doi.org/10.1109/TED.2017.2688134

    Article  CAS  Google Scholar 

  9. Xie Q, Wang Z, Taur Y (2017) . IEEE Trans Electron Devices 64(8):3511. https://doi.org/10.1109/TED.2017.2716969

    Article  CAS  Google Scholar 

  10. Shafi N, Sahu C, Periasamy C (2019) . IEEE Electron Device Letters 40(6):997. https://doi.org/10.1109/LED.2019.2911334

    Article  CAS  Google Scholar 

  11. Colinge J, Lee C, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’Neill B, Blake A, White M, Kelleher AM, McCarthy B, Murphy R (2010) . Nature Nanotechnology 5 (3):225. https://doi.org/10.1038/nnano.2010.15

    Article  CAS  Google Scholar 

  12. Colinge J, Kranti A, Yan R, Lee C, Ferain I, Yu R, Dehdashti Akhavan N, Razavi P (2011) . Solid-State Electronics 65-66:33. Selected Papers from the ESSDERC 2010 Conference. https://doi.org/10.1016/j.sse.2011.06.004

    Article  CAS  Google Scholar 

  13. Sahu C, Singh J (2014) . IEEE Electron Device Letters 35(3):411. https://doi.org/10.1109/LED.2013.2297451

    Article  CAS  Google Scholar 

  14. Hueting RJE, Rajasekharan B, Salm C, Schmitz J (2008) . IEEE Electron Device Letters 29(12):1367. https://doi.org/10.1109/LED.2008.2006864

    Article  Google Scholar 

  15. Lahgere A, Kumar MJ (2017) . IEEE Trans Electron Devices 64(1):3. https://doi.org/10.1109/TED.2016.2622741

    Article  CAS  Google Scholar 

  16. Gupta PS, Kanungo S, Rahaman H, Dasgupta PS (2012) .. In: 2012 International conference on computing, electronics and electrical technologies (ICCEET). https://doi.org/10.1109/ICCEET.2012.6203784, pp 761–765

  17. Gundapaneni S, Ganguly S, Kottantharayil A (2011) . IEEE Electron Device Letters 32 (3):261. https://doi.org/10.1109/LED.2010.2099204

    Article  CAS  Google Scholar 

  18. Shafi N, Sahu C, Periasamy C (2020) . IEEE Sensors J 20(9):4749. https://doi.org/10.1109/JSEN.2020.2964625

    Article  CAS  Google Scholar 

  19. Shafi N, Sahu C, Periasamy C (2018) . Superlattices Microstruct 120:75. https://doi.org/10.1016/j.spmi.2018.05.006

    Article  CAS  Google Scholar 

  20. Saraswat KC, Brors DL, Fair JA, Monnig KA, Beyers R (1983) . IEEE Trans Electron Devices 30(11):1497. https://doi.org/10.1109/T-ED.1983.21328

    Article  Google Scholar 

  21. Chen C, Liu W, Ma X, Shen Q, Song Z, Lin C (2009) . Thin Solid Films 517(8):2724. https://doi.org/10.1016/j.tsf.2008.10.043. http://www.sciencedirect.com/science/article/pii/S0040609008012704

    Article  CAS  Google Scholar 

  22. Zhu S, Huang Y, Ru G, Qu X, Li B (1999) . Journal of The Electrochemical Society 146(7):2712. https://doi.org/10.1149/1.1391997

    Article  CAS  Google Scholar 

  23. Alam K, Lake R (2012) . IEEE Trans Electron Devices 59:3250

    Article  CAS  Google Scholar 

  24. Ehteshamuddin M, Loan SA, Rafat M (2018) . IEEE Electron Device Letters 39(6):799. https://doi.org/10.1109/LED.2018.2829915

    Article  CAS  Google Scholar 

  25. Avci UE, Morris DH, Young IA (2015) . IEEE J Electron Devices Soc 3(3):88. https://doi.org/10.1109/JEDS.2015.2390591

    Article  Google Scholar 

  26. Lee K, Lee J, Kim S, Lee R, Kim S, Kim M, Lee J, Kim S, Park B (2020) . IEEE Trans Nanotechnol 19:168. https://doi.org/10.1109/TNANO.2020.2972605

    Article  CAS  Google Scholar 

  27. Chen W, Zhang J, He Q, Zhou H, Huang X, Ren Z, Su K, Mao W, Xue J, Zheng X, Zhang J, Hao Y (2019) . IEEE Trans Electron Devices 66(11):4673. https://doi.org/10.1109/TED.2019.2940504

    Article  CAS  Google Scholar 

  28. Kale S, Kondekar PN (2017) . IEEE Trans Electron Devices 64(11):4400. https://doi.org/10.1109/TED.2017.2754881

    Article  CAS  Google Scholar 

  29. Tripathy MR, Singh AK, Samad A, Singh PK, Baral K, Jit S (2020) . Semiconductor Science and Technology 35(10):105014. https://doi.org/10.1088/1361-6641/aba418

    Article  CAS  Google Scholar 

  30. Yu E, Lee WJ, Jung J, Cho S (2018) IEEE Trans Electron Devices: 1. https://doi.org/10.1109/TED.2018.2808764

  31. Sahay S, Kumar MJ (2016) . IEEE Trans Electron Devices 63(10):4138. https://doi.org/10.1109/TED.2016.2601239

    Article  CAS  Google Scholar 

  32. Shafi N, Bhat AM, Parmar JS, Sahu C, Periasamy C (2021) IEEE Trans Nanotechnology: 1–1. https://doi.org/10.1109/TNANO.2021.3089717

Download references

Acknowledgments

The authors would like to thank head of the department, Department of Electronics and Communication Engineering, Malaviya National Institute of Technology for providing necessary support for carrying out the simulation work.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

The main conception of this work is brainchild of N. Shafi (Author 1). A. M. Bhat, J. S. Parmar and A. Powral provided the necessary support regarding simulation and data interpretation. C. Sahu and C. Periasamy supervised the work and made important discussions and modifications to the final manuscript.

Corresponding author

Correspondence to Nawaz Shafi.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Not applicable.

Competing interests

The authors declare for no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafi, N., Bhat, A.M., Parmaar, J.S. et al. Virtually Doped Schottky Buried Metal Layer Planar Junctionless FET for SCE Suppression at sub-28nm Technology Nodes. Silicon 14, 4619–4631 (2022). https://doi.org/10.1007/s12633-021-01242-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01242-w

Keywords

Navigation