Skip to main content
Log in

Leakage mitigation in NW FET using negative Schottky junction drain and its process variation analysis

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, a Schottky junction on the drain side employing low workfunction (WF) metal is proposed as a method to suppress the OFF-state leakage in nanowire (NW) field-effect transistor (FET). Instead of a highly n+ doped drain, low WF metal with negative electron Schottky barrier height (SBH) as a drain minimizes the lateral band-to-band tunneling (L-BTBT) considerably. L-BTBT is the movement of carriers (holes) from the drain conduction band into the channel valence band during the OFF-state. Impact of varying WF at channel–drain junction on the device characteristics is studied. It is observed that SBH \(\leqslant 0\) eV is required to mitigate L-BTBT compared to the conventionally doped and junctionless (JL) NW counterpart. Furthermore, unlike L-BTBT, leakage in NW Schottky drain (SD) comprises of holes tunneling through the SB from the metal drain into the channel and is termed as the lateral SB tunneling (L-SBT). In contrast with JL NW FET, the process variation immunity (varying channel doping, \({N}_{\mathrm{Ch}}\) and NW diameter, \({d}_{\mathrm{NW}}\)) and the ON-state current of the proposed device are not compromised at the expense of lower OFF-state L-SBT. Instead, the device is less susceptible to process variations and retains the ON-state performance of the NW MOSFET. For a ± 20% change in \({N}_{\mathrm{Ch}}\), \(\Delta {I}_{\mathrm{OFF}}\)/\({I}_{\mathrm{OFF}}\) of 7% compared to 97% in NW JL FET is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011)

    Article  Google Scholar 

  2. Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014)

    Article  Google Scholar 

  3. Haris, M., Loan, S.A.: Si/gaas hetero junction tunnel fet: design and investigation. J. Nanoelectron. Optoelectron. 14(10), 1434–1444 (2019)

    Article  Google Scholar 

  4. Sajjad, R.N., Chern, W., Hoyt, J.L., Antoniadis, D.A.: Trap assisted tunneling and its effect on subthreshold swing of tunnel FETs. IEEE Trans. Electron Devices 63(11), 4380–4387 (2016)

    Article  Google Scholar 

  5. Ehteshamuddin, M., Alharbi, A.G., Loan, S.A.: Impact of interface traps on the BTBT-current in tunnel field effect transistors. In: 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), pp. 224–227 (2018)

  6. Asra, R., Murali, K.V., Rao, V.R.: A binary tunnel field effect transistor with a steep sub-threshold swing and increased ON-current. Jpn. J. Appl. Phys. 49(12R), 120203 (2010)

    Article  Google Scholar 

  7. Ehteshamuddin, M., Loan, S.A., Rafat, M.: A vertical-Gaussian doped SOI-TFET with enhanced DC and analog/RF performance. Semicond. Sci. Technol. 33(7), 075016 (2018)

    Article  Google Scholar 

  8. Loan, S.A., Rafat, M.: A high-performance inverted-c tunnel junction FET with source-channel overlap pockets. IEEE Trans. Electron Devices 65(2), 763–768 (2018)

    Article  Google Scholar 

  9. Uddin Shaikh, M.R., Loan, S.A.: Drain-engineered TFET with fully suppressed ambipolarity for high-frequency application. IEEE Trans. Electron Devices 66(4), 1628–1634 (2019)

    Article  Google Scholar 

  10. Haris, M., Loan, S.A., Mainnuddin, Alamoud, A.M.: Laterally asymmetric channel-based tunnel fieldeffect transistors: design and investigation. Int. J. Electron. 108, 1–21 (2020)

    Google Scholar 

  11. Loan, S.A., Rafat, M.: Insights into the impact of pocket and source elevation in vertical gate elevated source tunnel FET structures. IEEE Trans. Electron Devices 66(1), 752–758 (2019)

    Article  Google Scholar 

  12. Ehteshamuddin, M., Loan, S.A., Alharbi, A.G., Alamoud, A.M., Rafat, M.: Investigating a dual MOSCAP variant of line-TFET with improved vertical tunneling incorporating FIQC effect. IEEE Trans. Electron Devices 66(11), 4638–4645 (2019). https://doi.org/10.1109/TED.2019.2942423

    Article  Google Scholar 

  13. Glass, S., Kato, K., Kibkalo, L., Hartmann, J., Takagi, S., Buca, D., Mantl, S., Qing-Tai, Z.: A novel gate-normal tunneling field-effect transistor with dual-metal gate. IEEE J. Electron Devices Soc. 6, 1070–1076 (2018)

    Article  Google Scholar 

  14. Shaikh, M.R.U., Loan, S.A., Alshahrani, A.: Electrostatically doped drain engineered DG-TFET: proposal and analysis. Int. J. Numer. Model. Electron. Netw. Devices Fields 33(6), e2769 (2020)

    Article  Google Scholar 

  15. Sahay, S., Kumar, M.J.: Physical insights into the nature of gate-induced drain leakage in ultrashort channel nanowire FETs. IEEE Trans. Electron Devices 64(6), 2604–2610 (2017)

    Article  Google Scholar 

  16. Sahay, S.: Design and analysis of emerging nanoscale junctionless fets from gate-induced drain leakage perspective. Ph.D. dissertation, Elect. Eng., Indian Institute of Technology, Delhi, India (2017)

  17. Fan, J., Li, M., Xu, X., Yang, Y., Xuan, H., Huang, R.: Insight into gate-induced drain leakage in silicon nanowire transistors. IEEE Trans. Electron Devices 62(1), 213–219 (2014)

    Google Scholar 

  18. Rios, R., Cappellani, A., Armstrong, M., Budrevich, A., Gomez, H., Pai, R., Rahhal-Orabi, N., Kuhn, K.: Comparison of junctionless and conventional trigate transistors with \(\text{ L}_{{g}}\) down to 26 nm. IEEE Electron Device Lett. 32(9), 1170–1172 (2011)

    Article  Google Scholar 

  19. Lee, C.-W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.-P.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010)

    Article  Google Scholar 

  20. Thirunavukkarasu, V., Jhan, Y.-R., Liu, Y.-B., Wu, Y.-C.: Performance of inversion, accumulation, and junctionless mode n-type and p-type bulk silicon FinFETs with 3-nm gate length. IEEE Electron Device Lett. 36(7), 645–647 (2015)

    Article  Google Scholar 

  21. Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O'Neill, B., Blake, A., White, M., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  Google Scholar 

  22. Gundapaneni, S., Ganguly, S., Kottantharayil, A.: Bulk planar junctionless transistor (BPJLT): an attractive device alternative for scaling. IEEE Electron Device Lett. 32(3), 261–263 (2011). https://doi.org/10.1109/LED.2010.2099204

    Article  Google Scholar 

  23. Ehteshamuddin, M., Loan, S.A., Rafat, M.: Planar junctionless silicon-on-insulator transistor with buried metal layer. IEEE Electron Device Lett. 39(6), 799–802 (2018)

    Article  Google Scholar 

  24. Gundapaneni, S., Bajaj, M., Pandey, R.K., Murali, K.V.R.M., Ganguly, S., Kottantharayil, A.: Effect of band-to-band tunneling on junctionless transistors. IEEE Trans. Electron Devices 59(4), 1023–1029 (2012). https://doi.org/10.1109/TED.2012.2185800

    Article  Google Scholar 

  25. Choi, S.-J., Moon, D.-I., Kim, S., Duarte, J.P., Choi, Y.-K.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett. 32(2), 125–127 (2010)

    Article  Google Scholar 

  26. Leung, G., Chui, C.O.: Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron Device Lett. 33(6), 767–769 (2012)

    Article  Google Scholar 

  27. Gnudi, A., Reggiani, S., Gnani, E., Baccarani, G.: Analysis of threshold voltage variability due to random dopant fluctuations in junctionless FETs. IEEE Electron Device Lett. 33(3), 336–338 (2012)

    Article  Google Scholar 

  28. Yoon, J.-S., Rim, T., Kim, J., Kim, K., Baek, C.-K., Jeong, Y.-H.: Statistical variability study of random dopant fluctuation on gate-all-around inversion-mode silicon nanowire field-effect transistors. Appl. Phys. Lett. 106(10), 103507 (2015)

    Article  Google Scholar 

  29. Patil, G.C., Qureshi, S.: Engineering spacers in dopant-segregated Schottky barrier SOI MOSFET for nanoscale CMOS logic circuits. Semicond. Sci. Technol. 27(4), 045004 (2012)

    Article  Google Scholar 

  30. Patil, G., Qureshi, S.: Asymmetric drain underlap dopant-segregated Schottky barrier ultrathin-body SOI MOSFET for low-power mixed-signal circuits. Semicond. Sci. Technol. 28(4), 045002 (2013)

    Article  Google Scholar 

  31. Bashir, F., Alharbi, A.G., Loan, S.A.: Electrostatically doped DSL Schottky barrier MOSFET on SOI for low power applications. IEEE J. Electron Devices Soc. 6, 19–25 (2018)

    Article  Google Scholar 

  32. Hafiz, S.A., Ehteshamuddin, M., Loan, S.A.: Dielectrically modulated source-engineered charge-plasma-based Schottky-FET as a label-free biosensor. IEEE Trans. Electron Devices 66(4), 1905–1910 (2019)

    Article  Google Scholar 

  33. TCAD Sentaurus Device Version J-2014.09. http://www.synopsys.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad A. Loan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Ministry of Electronics and Information Technology, Government of India, through Visvesvaraya Ph.D. Scheme under Grant Number MEITY-PHD-580.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, M.R.U., Loan, S.A. & Alharbi, A.G. Leakage mitigation in NW FET using negative Schottky junction drain and its process variation analysis. J Comput Electron 20, 2360–2368 (2021). https://doi.org/10.1007/s10825-021-01813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01813-5

Keywords

Navigation