Skip to main content
Log in

Basicity, Optical Features, and Neutron/Charged Particle Attenuation Characteristics of P2O5-As2O3-PbO Glasses Doped with Tungsten Ions

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A glass system of composition 3As2O3-37PbO-(60-x) P2O5-xWO3 (\(0\le x\le \) 5 mol%) was synthesized using a conventional melt-quenching method. The characteristics of the optical properties were studied in detail by measuring the absorbance and transmittance spectra of the synthesized glass. The indirect optical band gap decreased from 4.55 eV to 4.33 eV, while the direct band gap decreased from 4.88 eV to 4.76 eV. The Urbach energy varied between 0.55 eV and 0.42 eV. The results obtained for the optical energy band gap and the refractive index demonstrated a slight increase with an increase in tungsten ions in the prepared samples. Basicity, electronegativity, polarizability, metallization, and physical characteristics were estimated based on the obtained results. The refractive index and optical band gap were estimated theoretically by determining the optical basicity and molar refractivity. The half-value layer (HVL) and mean free path (MFP) were estimated and were found to decrease with an increase in tungstate ions in the fabricated glasses. The electron number density (Neff) and effective conductivity (Ceff) were determined as follows: (Neff, Ceff)W0% < (Neff, Ceff)W1% < (Neff, Ceff)W2% < (Neff, Ceff)W3% < (Neff, Ceff)W5%. Our findings confirmed that the PPA glass containing W ions could provide a superior material for use as a gamma attenuation shield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

My manuscript and associated personal data.

References

  1. P.P. Pawar, S.R. Munishwar, S. Gautam, and R.S. Gedam, Physical, Thermal, Structural and Optical Properties of Dy3+ Doped Lithium Alumino-Borate Glasses for Bright W-LED. J. Lumin. 183, 79–88 (2017).

    Article  CAS  Google Scholar 

  2. N.A. Elalaily, A.H. Zahran, O.I. Sallam, and F.M. Ezz Eldin, Structure and electrical conductivity of ɤ-irradiated lead–phosphate glass containing MoO3. Appl. Phy. A. (2019). https://doi.org/10.1007/s00339-019-2414-2.

    Article  Google Scholar 

  3. S. Mohan, S. Kaur, D.P. Singh, and P. Kaur, Structural and Luminescence Properties of Samarium Doped Lead Alumino Borate Glasses. Opt. Mater. 73, 223–233 (2017).

    Article  CAS  Google Scholar 

  4. S.M. Salem, E.A. Mohamed, and J. Non-Cryst, Solids 357, 1153 (2011).

    CAS  Google Scholar 

  5. G.N. Greaves, X-Ray absorption spectroscopy. in Glass Science and Technology, vol. 4, part B, ed. by D.R. Uhlmann, N.J. Kreidl (Elsevier, Amsterdam, 1990), pp. 1–76

  6. N.A. Elalaily, and R.M. Mahamed, J. Nuclear Mater. 303, 44 (2002).

    Article  CAS  Google Scholar 

  7. A. Witkowska, J. Rybicki and A.D. Cicco, Structure of partially reduced xPbO(1−x)SiO2 glasses: combined EXAFS and MD study. J. Non-Cryst. Solids 351, 380–393 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.01.036.

    Article  CAS  Google Scholar 

  8. V.M. Sglavo, E. Mura, D. Milanese, and J. Lousteau, Mechanical Properties of Phosphate Glass Optical Fibers. Int. J. Appl. Glass Sci. 5, 57–64 (2014).

    Article  CAS  Google Scholar 

  9. R.K. Brow, Review: The Structure of Simple Phosphate Glasses. J. Non-Cryst. Solids. 263–264, 1–28 (2000).

    Article  Google Scholar 

  10. K. Meyer, Characterization of the Structure of Binary Calcium Ultraphosphate Glasses by Infrared and RAMAN SPECTROSCOPY. Phys. Chem. Glasses 39, 108 (1998).

    CAS  Google Scholar 

  11. S. Choi, J. Kim, J. Jung, H. Park, and B. Ryu, Effect of Substituting B2O3 for P2O5 in Conductive Vanadate Glass. J. Korean Ceram. Soc. 52, 140–145 (2015).

    Article  CAS  Google Scholar 

  12. Y.S. Rammah, F.I. El-Agawany, E.A. Abdel Wahab, M.M. Hessien, and Kh.S. Shaaban, Significant Impact of V2O5 Content on Lead Phosphor-Arsenate Glasses for Mechanical and Radiation Shielding Applications. Radiat. Phys. Chem. 193, 109956 (2022).

    Article  CAS  Google Scholar 

  13. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, and M. Kurudirek, Phy-X / PSD: Development of a User Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry. Radiat. Phys. Chem. 166, 108496 (2020).

    Article  Google Scholar 

  14. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban, E.S. Yousef, and S.A. Mahmoud, Opt. Quant Electron. 52, 125 (2020). https://doi.org/10.1007/s11082-020-2191-3.

    Article  CAS  Google Scholar 

  15. E.A. Abdel Wahab, K.S. Shaaban, R. Elsaman, and E.S. Yousef, Appl. Phys. A 125, 869 (2019). https://doi.org/10.1007/s00339-019-3166-8.

    Article  CAS  Google Scholar 

  16. E.A.A. Wahab, and K.S. Shaaban, Mater. Res. Exp. 5, 025207 (2018). https://doi.org/10.1088/2053-1591/aaaee8.

    Article  CAS  Google Scholar 

  17. A.A. El-Maaref, E.A.A. Wahab, K.S. Shaaban, M. Abdelawwad, M.S.I. Koubisy, J. Börcsök, and E.S. Yousef, Spectrochimica Acta Part A Mol. Biomol. Spectrosc. (2020). https://doi.org/10.1016/j.saa.2020.11877.

    Article  Google Scholar 

  18. K.S. Shaaban, E.A. Abdel-Wahab, A.A. El-Maaref, M. Abdelawwad, E.S. Yousef, H. Wilke, H. Hillmer, and J. Börcsök, J. Mater. Sci. Mater. Electron. 31, 4996 (2020). https://doi.org/10.1007/s10854-020-03065-8.

    Article  CAS  Google Scholar 

  19. S.K. Tripathy, Refractive Indices of Semiconductors from Energy Gaps. Opt. Mater. 46, 240–246 (2015). https://doi.org/10.1016/j.optmat.2015.04.026.

    Article  CAS  Google Scholar 

  20. T.S. Moss, Proc. Phys. Soc. Sect. B 63, 167–176 (1950). https://doi.org/10.1088/0370-1301/63/3/302.

    Article  Google Scholar 

  21. N.M. Ravindra, S. Auluck, and V.K. Srivastava, On the Pand gap in Semiconductors. Phys. Status Solidi B 93, K155–K160 (1979). https://doi.org/10.1002/pssb.2220930257.

    Article  CAS  Google Scholar 

  22. P.J.L. Herve, and L.K.J. Vandamme, Infrared Phys. Technol. 35, 609–615 (1994). https://doi.org/10.1016/1350-4495(94)90026-4.

    Article  CAS  Google Scholar 

  23. P.J.L. Herve, and L.K.J. Vandamme, J. Appl. Phys. 77, 5476–5477 (1995). https://doi.org/10.1063/1.359248.

    Article  CAS  Google Scholar 

  24. M. Anani, C. Mathieu, S. Lebid, Y. Amar, Z. Chama, and H. Abid, Comput. Mater. Sci 41, 570–757 (2008). https://doi.org/10.1016/j.commatsci.2007.05.023.

    Article  CAS  Google Scholar 

  25. V. Kumar, and J.K. Singh, Model for Calculating the Refractive Index of Different Materials. Ind. J. Pure Appl. Phys. 48, 571–574 (2010).

    CAS  Google Scholar 

  26. R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, and D. Raghuram, Opt. Mater. 10, 95–100 (1998). https://doi.org/10.1016/s0925-3467(97)00171-7.

    Article  CAS  Google Scholar 

  27. V. Dimitrov, and S. Sakka, Linear and Nonlinear Optical Properties of Simple Oxides II. J Appl. Phys. 79, 1741–1745 (1996). https://doi.org/10.1063/1.360963.

    Article  CAS  Google Scholar 

  28. S. Adachi, Optical properties, properties of group-IV, III-V and II-VI semiconductors, Wiley, Chichester, UK, 2005, pp. 211–281 https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/0470090340.ch10

  29. A.H. Hammad, and E.B. Moustafa, Study some of the Structural, Optical, and Damping Properties of Phosphate Glasses Containing Borate. J. Non-Cryst. Solids 544, 120209 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120209.

    Article  CAS  Google Scholar 

  30. S. Adachi, Optical properties, properties of group-IV, III-V and II-VI semiconductors, Wiley, Chichester, UK, (2005), pp. 211281. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/0470090340.ch10

  31. E.A.A. Wahab, K.S. Shaaban, and A.M. Al-Baradi, Enhancement of Optical and Physical Parameters of Lead Zinc Silicate Glasses by Doping W+3 Ions. SILICON (2021). https://doi.org/10.1007/s12633-021-01236-8.

    Article  Google Scholar 

  32. E.A. Abdel Wahab, and Kh.S. Shaaban, Structural and Optical Features of Aluminum Lead Borate Glass Doped with Fe2O3. Appl. Phys. A 127, 956 (2021). https://doi.org/10.1007/s00339-021-05062-y.

    Article  CAS  Google Scholar 

  33. E.A. Abdel Wahab, K.S. Shaaban, and E.S. Yousef, Enhancement of Optical and Mechanical Properties of Sodium Silicate Glasses Using Zirconia. Opt. Quant. Electron. 52, 458 (2020). https://doi.org/10.1007/s11082-020-02575-3.

    Article  CAS  Google Scholar 

  34. V.R.L. Murty, M. Venkateswarlu, K. Swapna, Sk. Mahamuda, P. Rekha Rani, A.S. Rao, Physical and Spectroscopic Studies of Sm3+ Ions Doped Alumino Tungsten Borate Glasses for Photonic Applications. Radiat. Phys. Chem. 190 (2022). https://doi.org/10.1016/j.radphyschem.2021.109806.

  35. J.A. Duffy, Electronic Polarizability and Related Properties of the Oxide Ions. Phys. Chem. Glasses 30, 1–4 (1989).

    CAS  Google Scholar 

  36. J.A. Duffy, Chemical Bonding in the Oxides of the Elements: A New Appraisal. J. Solid State Chem. 62, 145–157 (1986).

    Article  CAS  Google Scholar 

  37. http://www.schott.com/advanced_optics/english/products/opticalmaterials/special-materials/radiation-shielding-glasses/index.html.

  38. I.I. Bashter, Calculation of Radiation Attenuation Coefficients for Shielding Concretes. Ann. Nucl. Energy 24, 1389–1401 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R17), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. A.F. Abd El-Rehim extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the research groups program under grant number R.G.P. 2/60/43.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted full responsibility for the content of this manuscript and have given their approval for its submission.

Corresponding author

Correspondence to E. A. Abdel Wahab.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Consent to participate and Publication

The authors consent to participate and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file (PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, E.A.A., Alyousef, H.A., El-Rehim, A.F.A. et al. Basicity, Optical Features, and Neutron/Charged Particle Attenuation Characteristics of P2O5-As2O3-PbO Glasses Doped with Tungsten Ions. J. Electron. Mater. 52, 219–236 (2023). https://doi.org/10.1007/s11664-022-09969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09969-x

Keywords

Navigation