Skip to main content
Log in

Efficient Coupling in Transverse Strip Metal-Insulator-Metal Structure on Silicon-on-Insulator Layer Stack

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This article presents a new directional coupling between two transverse strip metal-insulator-metal (TS-MIM) waveguides on silicon-on-insulator (SOI) platform at 1.55 μm wavelength. The directional coupling between two TS-MIM waveguides shows a coupling length of less than 2 μm for a ridge width and gap width of 150 nm and 50 nm, respectively. Meanwhile, a direct coupling between a hybrid plasmonic (HP) waveguide and a TS-MIM waveguide was also investigated. The maximum optical power transmission from the HP-waveguide to the TS-MIM waveguide will occur at 1.3 μm long TS-MIM waveguide. An HP-waveguide coupled to the TS-MIM waveguide with a tapered tip is incredibly beneficial in nanofocusing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

All of data and material are available.

Code Availability

All of the required data from the utilized software can be delivered.

References

  1. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91. https://doi.org/10.1038/nphoton.2009.282

    Article  CAS  Google Scholar 

  2. Hill MT, Oei Y-S, Smalbrugge B, Zhu Y, De Vries T, Van Veldhoven PJ, Van Otten FW, Eijkemans TJ, Turkiewicz JP, De Waardt H (2007) Lasing in metallic-coated nanocavities. Nat Photonics 1(10):589–594. https://doi.org/10.1038/nphoton.2007.171

    Article  CAS  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830. https://doi.org/10.1038/nature01937

    Article  CAS  PubMed  Google Scholar 

  4. Oulton RF, Sorger VJ, Genov D, Pile D, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature photonics 2(8):496–500. https://doi.org/10.1038/nphoton.2008.131

    Article  CAS  Google Scholar 

  5. Dai D, He S (2010) Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Opt Express 18(17):17958–17966. https://doi.org/10.1364/OE.18.017958

    Article  CAS  PubMed  Google Scholar 

  6. Nikoufard M, Heydari N, Pourgholi S, Khomami AR (2016) Novel hybrid plasmonic-based directional coupler on InP substrate. Photonics and Nanostructures-Fundamentals and Applications 22:9–17. https://doi.org/10.1016/j.photonics.2016.08.002

    Article  Google Scholar 

  7. Nikoufard M, Alamouti MK, Pourgholi S (2017) Multimode interference power-splitter using InP-based deeply etched hybrid plasmonic waveguide. IEEE Trans Nanotechnol 16(3):477–483. https://doi.org/10.1109/TNANO.2017.2688397

  8. Gramotnev DK, Pile DF, Vogel MW, Zhang X (2007) Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Phys Rev B 75(3):035431. https://doi.org/10.1103/PhysRevB.75.035431

  9. Pile D, Gramotnev DK (2006) Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl Phys Lett 89(4):041111. https://doi.org/10.1063/1.2236219

    Article  CAS  Google Scholar 

  10. Choi H, Pile DF, Nam S, Bartal G, Zhang X (2009) Compressing surface plasmons for nano-scale optical focusing. Opt Express 17(9):7519–7524. https://doi.org/10.1364/OE.17.007519

    Article  CAS  PubMed  Google Scholar 

  11. Choo H, Kim M-K, Staffaroni M, Seok TJ, Bokor J, Cabrini S, Schuck PJ, Wu MC, Yablonovitch E (2012) Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photonics 6(12):838–844. https://doi.org/10.1038/nphoton.2012.277

    Article  CAS  Google Scholar 

  12. Vedantam S, Lee H, Tang J, Conway J, Staffaroni M, Yablonovitch E (2009) A plasmonic dimple lens for nanoscale focusing of light. Nano Lett 9(10):3447–3452. https://doi.org/10.1021/nl9016368

    Article  CAS  PubMed  Google Scholar 

  13. O’Connor D, McCurry M, Lafferty B, Zayats A (2009) Plasmonic waveguide as an efficient transducer for high-density data storage. Appl Phys Lett 95(17):171112. https://doi.org/10.1063/1.3257701

    Article  CAS  Google Scholar 

  14. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4(6):1085–1088. https://doi.org/10.1021/nl049573q

    Article  CAS  Google Scholar 

  15. Kim T, Lee W-S, Joe H-E, Lim G, Choi G-J, Gang M-G, Kang S-M, Park K-S, Min B-K, Park Y-P (2012) High-speed plasmonic nanolithography with a solid immersion lens-based plasmonic optical head. Appl Phys Lett 101(16):161109. https://doi.org/10.1063/1.4760263

    Article  CAS  Google Scholar 

  16. Khaleque A, Mironov EG, Osório JH, Li Z, Cordeiro CM, Liu L, Franco MA, Liow J-L, Hattori HT (2017) Integration of bow-tie plasmonic nano-antennas on tapered fibers. Opt Express 25(8):8986–8996. https://doi.org/10.1364/OE.25.008986

    Article  PubMed  Google Scholar 

  17. Lin Y-C, Lee P-T (2019) Efficient optical trapping of Nano-particle via waveguide-coupled hybrid Plasmonic Nano-taper. IEEE Photonics Journal 11(3):1–12. https://doi.org/10.1109/JPHOT.2019.2912836

    Article  CAS  Google Scholar 

  18. Tang L, Kocabas SE, Latif S, Okyay AK, Ly-Gagnon D-S, Saraswat KC, Miller DA (2008) Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photonics 2(4):226–229. https://doi.org/10.1038/nphoton.2008.30

    Article  CAS  Google Scholar 

  19. Chorsi HT, Zhu Y, Zhang JX (2017) Patterned Plasmonic surfaces—theory, fabrication, and applications in biosensing. J Microelectromech Syst 26(4):718–739. https://doi.org/10.1109/JMEMS.2017.2699864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Umakoshi T, Saito Y, Verma P (2016) Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 8(10):5634–5640. https://doi.org/10.1039/C5NR08548A

    Article  CAS  PubMed  Google Scholar 

  21. Wongpanya K, Kasaya T, Miyazaki HT, Oosato H, Sugimoto Y, Pijitrojana W (2016) Mass-productive fabrication of a metal–insulator–metal plasmon waveguide with a linear taper for nanofocusing. Applied Physics B 122(9):238. https://doi.org/10.1007/s00340-016-6515-8

    Article  CAS  Google Scholar 

  22. Kumar S, Park H, Cho H, Siddique R, Narasimhan V, Yang D, Choo H (2020) Overcoming evanescent field decay using 3D-tapered nanocavities for on-chip targeted molecular analysis. Nat Commun 11(1):1–9. https://doi.org/10.1038/s41467-020-16813-5

    Article  CAS  Google Scholar 

  23. Han Z, He S (2007) Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter. Opt Commun 278(1):199–203. https://doi.org/10.1016/j.optcom.2007.05.058

    Article  CAS  Google Scholar 

  24. Salgueiro J, Kivshar Y (2010) Nonlinear plasmonic directional couplers. Appl Phys Lett 97(8):081106. https://doi.org/10.1063/1.3482939

    Article  CAS  Google Scholar 

  25. Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C, Luo X (2010) Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide. Opt Express 18(20):21030–21037. https://doi.org/10.1364/OE.18.021030

    Article  CAS  PubMed  Google Scholar 

  26. Dai D, He S (2009) A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17(19):16646–16653. https://doi.org/10.1364/OE.17.016646

    Article  CAS  PubMed  Google Scholar 

  27. Lou F, Wang Z, Dai D, Thylen L, Wosinski L (2012) Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides. Appl Phys Lett 100(24):241105. https://doi.org/10.1063/1.4729018

    Article  CAS  Google Scholar 

  28. Amirhosseini A, Safian R (2013) A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 μm on SOI substrate. IEEE Trans Nanotechnol 12(6):1031–1036. https://doi.org/10.1109/TNANO.2013.2263987

    Article  CAS  Google Scholar 

  29. Ctyroký J, Kwiecien P, Richter I (2013) Analysis of hybrid dielectric-plasmonic slot waveguide structures with 3D Fourier modal methods. Journal of the European Optical Society-Rapid publications 8:13024. https://doi.org/10.2971/jeos.2013.13024

    Article  Google Scholar 

  30. Soleimannezhad F, Nikoufard M, Mahdian M (2020) A. Low-loss indium phosphide-based hybrid plasmonic waveguide. Microwave and Optical Technology Letters https://doi.org/10.1002/mop.32488

  31. Kwon M (2011) Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Opt Express 19(9):8379–8393. https://doi.org/10.1364/OE.19.008379

    Article  CAS  PubMed  Google Scholar 

  32. Chheang V, Lee TK, Oh GY, Kim HS, Lee BH, Kim DG, Choi YW (2013) Compact polarizing beam splitter based on a metal-insulator-metal inserted into multimode interference coupler. Opt Express 21(18):20880–20887. https://doi.org/10.1364/OE.21.020880

    Article  CAS  PubMed  Google Scholar 

  33. Haus H, Huang W, Kawakami S, Whitaker N (1987) Coupled-mode theory of optical waveguides. J Lightwave Technol 5(1):16–23. https://doi.org/10.1109/JLT.1987.1075416

    Article  Google Scholar 

Download references

Acknowledgments

We would like to appreciate E. Rajabalizadeh for helping in this article.

Author information

Authors and Affiliations

Authors

Contributions

All of contributors are in the author’s list or in acknowledgment.

Corresponding author

Correspondence to Mahmoud Nikoufard.

Ethics declarations

Ethics Approval

We confirm the ethic approval.

Consent to Participate

All of authors and contributors have consent for this article.

Consent for Publication

All of authors and contributors have consent to publish in this journal.

Conflicts of Interest/Competing Interests

There is no conflicts/competing of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghzadeh Maraghi, V., Eslami, M. & Nikoufard, M. Efficient Coupling in Transverse Strip Metal-Insulator-Metal Structure on Silicon-on-Insulator Layer Stack. Silicon 14, 2921–2929 (2022). https://doi.org/10.1007/s12633-021-01094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01094-4

Keywords

Navigation