Skip to main content

Advertisement

Log in

Fly Ash Based Geopolymer Concrete: a Comprehensive Review

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Manufacturing of ordinary Portland cement is an energy intensive process that emits harmful greenhouse gases in the atmosphere which pollutes the environment. With the surge in infrastructural activities across the world consumption of the concrete is also expected to increase thereby increasing the OPC production. On the other hand, under-utilization of fly ash from thermal power plants compare to its generation has created environmental and disposal problem. Utilization of fly ash based geopolymer concrete in place of Portland cement concrete presents a suitable remedy to the environmental and land disposal problems. Also, geopolymer concrete have less carbon footprint compared to Portland cement concrete. This paper presents a comprehensive review of composition, mix design methods, production process, curing regimes, benefits, limitation, and applications of fly ash based geopolymer concrete. It reports most notable research findings on properties of fresh and hardened state geopolymer concrete over past decade. Lastly, it determines key factors to be considered for selecting appropriate curing regime for achieving required performance of concrete. Compilation of such extensive volume of information may provide a valuable insight for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Malhotra VM (2002) Introduction: sustainable development and concrete technology. ACI Concr Int 24:22

    Google Scholar 

  2. Hardjito D, Wallah SE, Sumajouw DM, Rangan BV (2004) On the development of fly ash-based geopolymer concrete. Mater J 101:467–472

    CAS  Google Scholar 

  3. Harris D, Heidrich C, Feuerborn J (2019) Global aspects on coal combustion products. In: World of Coal Ash Conference, Conference Paper

  4. Haque ME (2013) Indian fly-ash: production and consumption scenario. Int J Waste Resour 3:22–25

    Article  Google Scholar 

  5. Surabhi S (2017) Fly ash in India: generation vis-à-vis utilization and Global perspective. Int J Appl Chem 13:29–52

    Google Scholar 

  6. Report on fly ash generation at coal/Lignite based thermal power stations and its utilization in the country for year 2019-20 (Nov 2020) Central Electricity Authority, New Delhi. http://www.cea.nic.in/reports/others/thermal/tcd/flyash_2019-20.pdf. Accessed 02 Feb 2021

  7. Rastogi A, Paul VK (2020) A critical review of the potential for fly ash utilisation in construction-specific applications in India. Env Res Eng Manag 76:65–75

    Article  Google Scholar 

  8. Davidovits J (1989) Geopolymers and geopolymeric materials. J Therm Anal 35:429–441

    Article  CAS  Google Scholar 

  9. Meesala CR, Verma NK, Kumar S (2020) Critical review on fly-ash based geopolymer concrete. Struct Concr 21:1013–1028

    Article  Google Scholar 

  10. Agrawal US, Wanjari SP, Naresh DN (2019) Impact of replacement of natural river sand with geopolymer fly ash sand on hardened properties of concrete. Const Build Mater 209:499–507

    Article  CAS  Google Scholar 

  11. Malhotra VM (1999) In: Parameswaran VS (eds) International Conference on Fibre Composites, High-Performance Concrete and Smart Materials, Chennai, India

  12. McCaffrey R (2002) Climate change and the cement industry. GCL: Envir Sp Issu 8:15–19. https://thegreencaiman.files.wordpress.com/2016/03/climate_change_and_the_cement_industry.pdf

  13. Agrawal US, Wanjari SP, Naresh DN (2017) Characteristic study of geopolymer fly ash sand as a replacement to natural river sand. Const Build Mater 150:681–688

    Article  CAS  Google Scholar 

  14. Mathew BJ, Sudhakar M, Natarajan C (2013) Strength, economic and sustainability characteristics of coal ash–GGBS based geopolymer concrete. Int J Comput Eng Res 3:207–212

    Google Scholar 

  15. Risdanareni P, Ekaputri JJ, Abdullah Al Bakri MM (2015) Effect of alkaline activator ratio to mechanical properties of geopolymer concrete with trass as filler. Appl Mech Mater 754:406–412

    Article  Google Scholar 

  16. Temuujin J, Van Riessen A, MacKenzie KJD (2010) Preparation and characterisation of fly ash based geopolymer mortars. Const Build Mater 24:1906–1910

    Article  Google Scholar 

  17. Headwaters Resources (2005) Fly ash types& benefits. Utah, USA. http://www.flyash.com/data/upimages/press/TB.1%20Fly%20Ash%20-%20Types%20&%20Benefits.pdf

  18. Thomas M (2007) Optimizing the use of fly ash in concrete. Portland Cement Association, Skokie, vol 5420, p 24

  19. Ekaputri JJ, Bahrul UM, Bayuaji R, Eddy ST, Mustafa M, Bakri A, Ash F (2015) A comprehensive characterization and determination of fly ashes in indonesia using different methods. Appl Mech Mater 754:320–325

    Article  Google Scholar 

  20. Das SK, Mohapatra AK, Rath AK (2014) Geo-polymer concrete – Green concrete for the future — A review. Int J Civ Eng Res 5:21–28

    Google Scholar 

  21. Al Bakri MM, Mohammed H, Kamarudin H, Niza IK, Zarina Y (2011) Review on fly ash-based geopolymer concrete without portland cement. J Eng Technol Res 3(1):1–4

    CAS  Google Scholar 

  22. Ryu GS, Lee YB, Koh KT, Chung YS (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Const Build Mater 47:409–418

    Article  Google Scholar 

  23. Joseph B, Mathew G (2012) Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica 19:1188–1194

    Article  CAS  Google Scholar 

  24. Isabella C, Xu H, Luckey GC, Van Deventer JSJ (2003) In: Mistry V, Azizinamini A, Hooks JM (eds). The effect of aggregate particle size on formation of geopolymeric gel. In: Advanced Materials Proceedings, Davos, Switzerland. https://dc.engconfintl.org/advanced_materials/9/

  25. Ma CK, Awang AZ, Omar W (2018) Structural and material performance of geopolymer concrete: A review. Const Build Mater 186:90–102

    Article  CAS  Google Scholar 

  26. Zerfu K, Ekaputri JJ (2016) Review on alkali-activated fly ash based geopolymer concrete. Mater Sci For 841:162–169

    Google Scholar 

  27. Shah MV, Kammula R, Nannapaneni P, Raijiwala PDB (2014) Alkali activated flyash based geopolymer concrete. J Artic 3:159–166

    Google Scholar 

  28. Nematollahi B, Sanjayan J (2014) Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater Des 57:667–672

    Article  CAS  Google Scholar 

  29. Li N, Zhang Z, Shi C, Zhang J (2018) In: Alengram UJ, Hung MK, Jumaat MZ, Sulong NHR, Raman SN (eds) Some progresses in the challenges for geopolymer. IOP Conference Series: Material Science and Engineering, Malaysia

  30. Montes C, Gomez SA, Khadka N, Allouche EN (2013) Statistical software to improve the accuracy of geopolymer concrete mix design and proportioning. Proceedings of 2013 world of coal ash conference, Lexington, Kentucky, USA, 22–25 April 2013. American Coal Ash Association, Farmington Hills, Michigan, USA. http://www.flyash.info/2013/123-Montes-2013.pdf

  31. Li N, Shi C, Zhang Z, Wang H, Liu Y (2019) A review on mixture design methods for geopolymer concrete. Compos Part B Eng 178:107490

    Article  CAS  Google Scholar 

  32. Xie T, Visintin P, Zhao X, Gravina R (2020) Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach. Constr Build Mater 256:119380

    Article  CAS  Google Scholar 

  33. Rangan B (2007) Concrete construction engineering handbook. CRC Press, Boca Raton

    Google Scholar 

  34. Diaz-Loya EI, Allouche EN, Vaidya S (2011) Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater J 108:300

    CAS  Google Scholar 

  35. Diaz EI, Allouche EN, Eklund S (2010) Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89:992–996

    Article  CAS  Google Scholar 

  36. Junaid MT, Narong T, Pichai N (2006) Reducing bleeding in mix for bored pile application without affecting other fresh concrete properties: methodology and procedure. In: Proceedings of the tenth East Asia-Pacific conference on structural engineering and construction. Bangkok, Thailand

  37. Nawy EG (2008) Concrete construction engineering handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  38. Lloyd N, Rangan V (2010) In: Zachar J, Claisse P, Naik TR, Ganjian E (eds) Geopolymer concrete with fly ash. ASCE, Italy

    Google Scholar 

  39. Kong DL, Sanjayan JG (2008) Damage behavior of geopolymer composites exposed to elevated temperatures. Cem Conc Comp 30:986–991

    Article  CAS  Google Scholar 

  40. Li N, Shi C, Wang Q, Zhang Z, Ou Z (2017) Composition design and performance of alkali-activated cements. Mater Struct 50:178

    Article  Google Scholar 

  41. Aughenbaugh KL, Williamson T, Juenger MCG (2015) Critical evaluation of strength prediction methods for alkali-activated fly ash. Mater Struc 48:607–620

    Article  CAS  Google Scholar 

  42. RSN 336-84 (1984) Republican building norms for production and use of slag alkaline binders, concretes and structures. The National Committee Ukrainian Republic of the USSR for construction, Kiev, USSR

  43. Rangan BV (2008) Design and manufacture of flyash-based geopolymer concrete. Conc Aust 34:37–43

    Google Scholar 

  44. Anuradha R, Sreevidya V, Venkatasubramani R, Rangan BV (2012) Modified guidelines for geopolymer concrete mix design using Indian standard. Asian J Civ Eng (Build Hous) 13:353–364

    Google Scholar 

  45. Ferdous MW, Kayali O, Khennane A (2013) A detailed procedure of mix design for fly ash based geopolymer concrete. In: Proceedings of the fourth Asia-Pacific conference on FRP in structures. Melbourne, Australia https://researchbank.swinburne.edu.au/file/552b44c9-7cb9-4509-8229-ec0f1f9bba0c/1/PDF%20%28Published%20version%29.pdf

  46. Ferdous W, Manalo A, Khennane A, Kayali O (2015) Geopolymer concrete-filled pultruded composite beams–concrete mix design and application. Cem Conc Comp 58:1–13

    Article  CAS  Google Scholar 

  47. Pavithra PE, Reddy MS, Dinakar P, Rao BH, Satpathy BK, Mohanty AN (2016) A mix design procedure for geopolymer concrete with fly ash. J Clean Prod 133:117–125

    Article  CAS  Google Scholar 

  48. Li N, Shi C, Zhang Z, Zhu D, Hwang HJ, Zhu Y, Sun T (2018) A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete. Cem Conc Comp 93:163–174

    Article  CAS  Google Scholar 

  49. Bondar D, Nanukuttan S, Provis JL, Soutsos M (2019) Efficient mix design of alkali activated slag concretes based on packing fraction of ingredients and paste thickness. J Clean Prod 218:438–449

    Article  CAS  Google Scholar 

  50. Bellum RR, Nerella R, Madduru SRC, Indukuri CSR (2019) Mix design and mechanical properties of fly ash and GGBFS-synthesized Alkali-Activated Concrete (AAC). Infrastructures 4:20

    Article  Google Scholar 

  51. Rao GM, Kumar KS, Poloju KK, Srinivasu K (2020) In: Kumar SV, Jena SP, Vardhan MV (eds) An emphasis of geopolymer concrete with single activator and conventional concrete with recycled aggregate and data analyzing using artificial neural network. IOP Conference Series: Materials Science and Engineering, India

  52. Longos A, Tigue AA, Dollente IJ, Malenab RA, Bernardo-Arugay I, Hinode H, Kurniawan W, Promentilla MA (2020) Optimization of the mix formulation of geopolymer using nickel-laterite mine waste and coal fly ash. Mine 10:1144

    CAS  Google Scholar 

  53. Bondar D, Ma Q, Soutsos M, Basheer M, Provis JL, Nanukuttan S (2018) Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Const Build Mater 190:191–199

    Article  CAS  Google Scholar 

  54. Türkmen İ, Gül R, Çelik C (2008) A Taguchi approach for investigation of some physical properties of concrete produced from mineral admixtures. Build Env 43:1127–1137

  55. Hadi MN, Farhan NA, Sheikh MN (2017) Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Const Build Mater 140:424–431

    Article  CAS  Google Scholar 

  56. Mehta A, Siddique R, Singh BP, Aggoun S, Łagód G, Barnat-Hunek D (2017) Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Const Build Mater 150:817–824

    Article  CAS  Google Scholar 

  57. Zain MFM, Abd SM (2009) Multiple regression model for compressive strength prediction of high performance concrete. J App Sci 9:155–160

  58. Lokuge W, Wilson A, Gunasekara C, Law DW, Setunge S (2018) Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model. Const Build Mater 166:472–481

    Article  CAS  Google Scholar 

  59. Hadi MN, Zhang H, Parkinson S (2019) Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. J Build Eng 23:301–313

    Article  Google Scholar 

  60. Dao DV, Ly HB, Trinh SH, Le TT, Pham BT (2019) Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Mater 12:983

    Article  Google Scholar 

  61. Ling Y, Wang K, Wang X, Li W (2019) Prediction of engineering properties of fly ash-based geopolymer using artificial neural networks. Neur Comp Appl 3:1–21

    Google Scholar 

  62. Gao Y, Xu J, Luo X, Zhu J, Nie L (2016) Experiment research on mix design and early mechanical performance of alkali-activated slag using response surface methodology (RSM). Ceram Int 42:11666–11673

    Article  CAS  Google Scholar 

  63. Zahid M, Shafiq N, Isa MH, Gil L (2018) Statistical modeling and mix design optimization of fly ash based engineered geopolymer composite using response surface methodology. J Clean Prod 194:483–498

    Article  CAS  Google Scholar 

  64. CEN/TR PD (2013) Principles of the equivalent durability procedure. CEN, Brussels, p 16563

    Google Scholar 

  65. El-Hassan H, Ismail N (2018) Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. J Sustain Cem Based Mater 7:122–140

    Article  CAS  Google Scholar 

  66. Khayat KH, Ghezal A, Hadriche MS (2000) Utility of statistical models in proportioning self-consolidating concrete. Mater Str 33:338–344

    Article  Google Scholar 

  67. Cihan MT, Güner A, Yüzer N (2013) Response surfaces for compressive strength of concrete. Constr Build Mater 40:763–774

    Article  Google Scholar 

  68. Aldahdooh MAA, Bunnori NM, Johari MM (2013) Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method. Mater Des 52:957–965

    Article  CAS  Google Scholar 

  69. Mohammed BS, Achara BE, Nuruddin MF, Yaw M, Zulkefli MZ (2017) Properties of nano-silica-modified self-compacting engineered cementitious composites. J Clean Prod 162:1225–1238

    Article  CAS  Google Scholar 

  70. Joshi SV, Kadu MS (2012) Role of alkaline activator in development of eco-friendly fly ash based geo polymer concrete. Int J Environ Sci Dev 3:417

    Article  CAS  Google Scholar 

  71. Motorwala A, Shah V, Kammula R, Nannapaneni P, Raijiwala DB (2013) Alkali activated fly-ash based geopolymer concrete. Int J Emerg Technol Adv Eng 3:159–166

    Google Scholar 

  72. Vijai K, Kumutha R, Vishnuram BG (2010) Effect of types of curing on strength of geopolymer concrete. Int J Phys Sci 5:1419–1423

    CAS  Google Scholar 

  73. Adam AA, Horianto (2014) The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Proc Eng 95:410–414

    Article  CAS  Google Scholar 

  74. Patil AA, Chore HS, Dode PA (2014) Effect of curing condition on strength of geopolymer concrete. Adv Conc Const 2:029

    Google Scholar 

  75. Venkateswara Rao J, Srinivasa Rao K, Rambabu K (2019) Performance of heat and ambient cured geopolymer concrete exposed to acid attack. Proc Inst Civ Eng Const Mater 172:192–200

    Article  Google Scholar 

  76. Karunanithi S, Anandan S (2014) Flexural toughness properties of reinforced steel fibre incorporated alkali activated slag concrete. Adv Civ Eng 4(3):1–12

    Google Scholar 

  77. Srinivasan K, Sivakumar A (2015) Chemical activation and curing regime of geopolymer concretes. Proc Inst Civ Eng Const Mater 168:24–34

    Article  Google Scholar 

  78. Yewale VV, Shirsath MN, Hake SL (2016) Evaluation of efficient type of curing for geopolymer concrete. Int J New Technol Sci Eng 3:10–14

    Google Scholar 

  79. Azarsa P, Gupta R (2020) Comparative study involving effect of curing regime on elastic modulus of geopolymer concrete. Buildings 10:101

    Article  Google Scholar 

  80. Kumaravel S (2014) Development of various curing effect of nominal strength Geopolymer concrete. J Eng Sci Technol Rev 7:116–119

    Article  Google Scholar 

  81. Rao GM, Venu M (2020). In: Sunramaniam KVL, Khan AM (eds) Mix design methodology for fly ash and GGBS-based geopolymer concrete. Springer, Singapore

    Google Scholar 

  82. Chindaprasirt P, Rattanasak U, Taebuanhuad S (2013) Role of microwave radiation in curing the fly ash geopolymer. Adv Powder Technol 24:703–707

    Article  CAS  Google Scholar 

  83. Hong S, Kim H (2019) Effects of microwave energy on fast compressive strength development of coal bottom ash-based geopolymers. Sci Rep 9:1–17

    Article  Google Scholar 

  84. Kastiukas G, Ruan S, Liang S, Zhou X (2020) Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment. J Clean Prod 255:120290

    Article  CAS  Google Scholar 

  85. Hardjito D, Wallah SE, Sumajouw DM, Rangan BV (2004) Factors influencing the compressive strength of fly ash-based geopolymer concrete. Civ Eng Dimens 6:88–93

    Google Scholar 

  86. Rangan BV, Wallah S, Sumajouw D, Hardjito D (2006) Heat-cured, low-calcium, fly ash-based geopolymer concrete. Ind Conc J 80:47–52

    Google Scholar 

  87. Memon FA, Nuruddin MF, Demie S, Shafiq N (2012) Effect of superplasticizer and extra water on workability and compressive strength of self-compacting geopolymer concrete. Res J Appl Sci Eng Technol 4:407–414

    CAS  Google Scholar 

  88. Sanni SH, Khadiranaikar RB (2012) Performance of geopolymer concrete under severe environmental conditions. Int J Civ Struct Eng 3:396–407

    CAS  Google Scholar 

  89. Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Conc Comp 55:205–214

    Article  CAS  Google Scholar 

  90. Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des 62:32–39

    Article  CAS  Google Scholar 

  91. Yasir S, Iftekar G (2015) Study of properties of Fly ash based geopolymer concrete. Inter J of Eng Res 3(3):74–79 http://www.ijoer.in/3.1.15/Yasir%2074-79.pdf

  92. Singhal D, Junaid MT, Jindal BB, Mehta A (2018) Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Const Build Mater 180:298–307

    Article  Google Scholar 

  93. Jamkar SS, Ghugal YM, Patankar SV (2013) Effect of fly ash fineness on workability and compressive strength of geopolymer concrete. The Ind Conc J 87:57–62

    Google Scholar 

  94. Gomaa E, Sargon S, Kashosi C, Gheni A, El Gawady MA (2020) Mechanical properties of high early strength class C fly ash-based alkali activated concrete. Trans Res Rec J Transp Res Board 2674:430–443

    Article  Google Scholar 

  95. Hardjito D, Rangan BV (2005) Development and properties of low-calcium fly ash-based geopolymer concrete. Report, Curtin University of Technology, Perth

  96. Olivia M, Nikraz H (2011) Strength and water penetrability of fly ash geopolymer conrete. J Eng Appl Sci 6:70–78

    Google Scholar 

  97. Shetty KK, Gopinatha N, Pandit P, Karkera J, Kiran Kumara SS (2015) Strength and shrinkage characteristics of geo-polymer concrete. Int J Earth Sci Eng 8:169–172

    Google Scholar 

  98. Abdullah MMAB, Hussin K, Bnhussain M, Ismail KN, Yahya Z, Abdul Razak R (2012) Fly ash-based geopolymer lightweight concrete using foaming agent. Int J Mol Sci 13(6):7186–7198

    Article  Google Scholar 

  99. Omar AA, Al Bakri Abdullah MM, Hussin K, Khairul Nizar I (2013) Lightweight fly ash-based geopolymer concrete. Adv Mater Res 626:781–785

    Article  Google Scholar 

  100. Khalil WI, Abbas WA, Nasser IF (2019) Dynamic modulus of elasticity of geopolymer lightweight aggregate concrete. In: IOP Conference Series: Materials Science and Engineering, Iraq

  101. Top S, Vapur H, Altiner M, Kaya D, Ekicibil A (2020) Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates. J Mol Struct 1202:127236

    Article  CAS  Google Scholar 

  102. Leung CK, Pheeraphan T (1995) Very high early strength of microwave cured concrete. Cem Conc Res 25:136–146

    Article  CAS  Google Scholar 

  103. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: A cement for the future. Cem Conc Res 29:1323–1329

    Article  CAS  Google Scholar 

  104. Ahmed MF, Nuruddin MF, Shafiq N (2011) Compressive strength and workability characteristics of low-calcium fly ash-based self-compacting geopolymer concrete. Int J Civ Env Eng 5:64–70

    Google Scholar 

  105. Duxson P, Lukey GC, Separovic F, Van Deventer JSJ (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44:832–839

    Article  CAS  Google Scholar 

  106. Sagoe-Crentsil K, Weng L (2007) Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. J Mater Sci 42:3007–3014

    Article  CAS  Google Scholar 

  107. Weng L, Sagoe-Crentsil K (2007) Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems. J Mater Sci 42:2997–3006

    Article  CAS  Google Scholar 

  108. Hou Y, Wang D, Zhou W, Lu H, Wang L (2009) Effect of activator and curing mode on fly ash-based geopolymers. J Wuhan Univ Tech Mater Sci Ed 24:711

    Article  CAS  Google Scholar 

  109. Panias D, Giannopoulou IP, Perraki T (2007) Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Coll Surf A: Phys Eng Asp 301:246–254

    Article  CAS  Google Scholar 

  110. Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem Conc Res 35:1984–1992

    Article  Google Scholar 

  111. Jaydeep S, Chakravarthy BJ (2013) Study on fly ash based geo-polymer concrete using admixtures. Int J Eng Trends Technol 4:4614–4617

    Google Scholar 

  112. Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos 29:224–229

    Article  CAS  Google Scholar 

  113. Nagalia G, Park Y, Abolmaali A, Aswath P (2016) Compressive strength and microstructural properties of fly ash–based geopolymer concrete. J Mater Civ Eng 28:04016144

    Article  Google Scholar 

  114. Van Dao D, Trinh SH (2020) In: Cuong H-M, Van Dao D, Benboudjema F, Sybil D, Huynh DVK, Tang AM (eds) Mechanical properties of fly ash based geopolymer concrete using only steel slag as aggregate. Springer, Singapore

  115. Hardjasaputra H, Cornelia M, Gunawan Y, Surjaputra IV, Lie HA, Ng GP (2019) In: Lie HA, Garrecht H, Sharma A, Hardjasaputra H (eds) Study of mechanical properties of fly ash-based geopolymer concrete. In IOP Conference Series: Materials Science and Engineering, Germany

  116. Ganesh AC, Muthukannan M (2019) In: Muthusamy R (eds) Experimental study on the behaviour of hybrid fiber reinforced geopolymer concrete under ambient curing condition. In IOP Conference Series: Materials Science and Engineering, India

  117. Moradikhou AB, Esparham A, Avanaki MJ (2020) Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Constr Build Mater 251:118965

    Article  CAS  Google Scholar 

  118. Nematollahi B, Sanjayan J, Chai JXH, Lu TM (2014) Properties of fresh and hardened glass fiber reinforced fly ash based geopolymer concrete. Key Eng Mater 594:629–633

    Google Scholar 

  119. Łach M, Hebdowska-Krupa M, Mierzwiński D, Korniejenko K (2019) In: Lach M (eds) Mechanical properties of geopolymers reinforced with carbon and aramid long fibers. In IOP Conference Series: Materials Science and Engineering, Uruguay

  120. Sukmak P, De Silva P, Horpibulsuk S, Chindaprasirt P (2015) Sulfate resistance of clay-portland cement and clay high-calcium fly ash geopolymer. J of Mater in Civi Eng 27:04014158

    Article  Google Scholar 

  121. Nguyen KT, Lee YH, Lee J, Ahn N (2013) Acid resistance and curing properties for green fly ash-geopolymer concrete. J Asian Archit Build Eng 12:317–322

    Article  Google Scholar 

  122. Wallah E, Rangan BV (2006) Low-calcium fly ash-based geopolymer concrete: Long-term properties. Report, Curtin University of Technology, Perth

  123. Rendell F, Jauberthie R, Grantham M (2002) Deteriorated concrete: Inspection and physicochemical analysis. Thomas Telford, Scotland

    Book  Google Scholar 

  124. Bhutta MAR, Hussin WM, Azreen M, Tahir MM (2014) Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash. J Mater Civ Eng 26:04014080

    Article  Google Scholar 

  125. Wallah SE (2009) Drying shrinkage of heat-cured fly ash-based geopolymer concrete. Mod Appl Sci 3:14–21

    Article  CAS  Google Scholar 

  126. Davidovits J (1999) In: Davidovits J (ed) Chemistry of geopolymeric systems terminology. Proceedings of International Conference on Geopolymers, France, p 1999. https://www.tib.eu/en/search/id/BLCP:CN057039461/Chemistry-of-Geopolymeric-Systems-Terminology-pp?cHash=e692c081d1b646aed83bdb4a07970e96

  127. Davidovits J (2013) Geopolymer cement. A review. Geop Insti Tech Pap 21:1–11

    Google Scholar 

  128. Sakthidoss DD, Senniappan T (2020) A study on high strength geopolymer concrete with alumina-silica materials using manufacturing sand. Silicon 12:735–746

    Article  CAS  Google Scholar 

  129. Zhao R, Yuan Y, Cheng Z, Wen T, Li J, Li F, Ma ZJ (2019) Freeze-thaw resistance of class F fly ash-based geopolymer concrete. Const Build Mater 222:474–483

    Article  CAS  Google Scholar 

  130. Abdelmseeh VA, Jofriet JC, Negi SC, Hayward GL (2005) Corrosion of reinforced concrete specimens exposed to hydrogen sulphide and sodium sulphate. Agric Eng Int CIGR J 7:1–15

    Google Scholar 

  131. Kishan LJ, Radhakrishna (2013) Comparative study of cement concrete and Geopolymer masonry blocks. Int J of Res in Eng Tech:361–365. https://ijret.org/volumes/2013v02/i13/IJRET20130213068.pdf

  132. Oyebisi S, Ede A, Olutoge F, Omole D (2020) Geopolymer concrete incorporating agro-industrial wastes: Effects on mechanical properties, microstructural behaviour and mineralogical phases. Const Build Mater 256:119390

    Article  CAS  Google Scholar 

  133. Ostwal T, Chitawadagi MV (2014) Experimental investigations on strength, durability, sustainability and economic characteristics of geopolymer concrete blocks. Int J Res Eng Technol 3:115–122

    Article  Google Scholar 

  134. Ojha A, Gupta L (2020) In: Chauhan A, Sehgal S (eds) Comparative study on mechanical properties of conventional and geo-polymer concrete with recycled coarse aggregate. Materials Today: Proceedings, Chandigarh, Punjab, India

  135. Mathew BJ, Sudhakar M, Natarajan C (2013) Strength, economic and sustainability characteristics of coal ash–GGBS based geopolymer concrete. Int J Comp Eng Res 3:207–212

    Google Scholar 

  136. Sun P, Wu HC (2008) Transition from brittle to ductile behavior of fly ash using PVA fibers. Cem Conc Comp 30:29–36

    Article  Google Scholar 

  137. Yunsheng Z, Wei S, Zongjin L, Xiangming Z, Chungkong C (2008) Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber. Constr Build Mater 22:370–383

    Article  Google Scholar 

  138. Andrews-Phaedonos F (2014) Specification and use of geopolymer concrete. Austroads bridge conference, 9th, 2014, Sydney, New South Wales, Australia (no. 6.2). https://trid.trb.org/view/1341131

  139. Goriparthi MR (2017) Effect of fly ash and GGBS combination on mechanical and durability properties of GPC. Adv Conc Const 5:313

    Google Scholar 

Download references

Acknowledgements

The principal author acknowledges the contribution of co-author in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Literature search, data analysis and drafting are performed by principal author. Idea for the article and critical revision is provided by co-author.

Corresponding author

Correspondence to Avinash Ojha.

Ethics declarations

Conflicts of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 

Consent to participate

The author(s) declare that no humans or participants are involved in this study.

Consent for publication

The author(s) declare that the figures and tables used in this paper are original and are not published anywhere.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, A., Aggarwal, P. Fly Ash Based Geopolymer Concrete: a Comprehensive Review. Silicon 14, 2453–2472 (2022). https://doi.org/10.1007/s12633-021-01044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01044-0

Keywords

Navigation