Skip to main content
Log in

The Effect of CZTS Ultrathin Film Thickness on the Electrical Characteristic of CZTS/Si Heterojunction Solar Cells in the Darkness and under the Illumination Conditions

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, Ag/CZTS/Si/Al heterojunction solar cells were produced depending on some parameters of CZTS ultrathin active film layers grown on a n-Si wafer by PLD technique. CZTS ultrathin films have been produced as a function of the number of laser pulses and then annealed in a tube oven as a function of sulfurization temperature. The crystal structure, the optical and morphological properties of grown&annealed CZTS ultrathin films were examined by XRD, UV-vis spectra, AFM, respectively. The electrical characteristics of CZTS heterojunction solar cell in the darkness, which were investigated by the conventional J-V Method, Cheung Cheung Method and Norde Method. As the thickness of CZTS ultrathin films increased, the forward current of CZTS heterojunctions increased and their ideality factor, serial resistance and barrier height decreased. Also, the efficiency of Ag/CZTS/Si/Al heterojunction solar cells have been examined and characterised as a function of CZTS ultrathin film thickness under the illumination conditions. J-V curves of CZTS heterojunction solar cells were determined under AM 1.5 solar radiation in 80 MW/cm2, all CZTS heterojunction solar cells have exhibited the photovoltaic behaviour. Jsc, Voc, FF, η parameters of Ag/CZTS/Si/Al heterojunction solar cells were measured, interpreted and compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song X, Ji X, Li M, Lin W, Luo X, Zhang H (2014) A review on development prospect of CZTS based thin film solar cells. International Journal of Photoenergy 2014:1–11

    Article  CAS  Google Scholar 

  2. Suryawanshi M et al (2013) CZTS based thin film solar cells: a status review. Mater Technol 28(1–2):98–109

    Article  CAS  Google Scholar 

  3. Dhakal TP, Peng C–Y, Reid Tobias R, Dasharathy R, Westgate CR (2014) Characterization of a CZTS thin film solar cell grown by sputtering method. Sol Energy 100:23–30

    Article  CAS  Google Scholar 

  4. Cazzaniga A, Crovetto A, Yan C, Sun K, Hao X, Ramis Estelrich J, Canulescu S, Stamate E, Pryds N, Hansen O, Schou J (2017) Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition. Sol Energy Mater Sol Cells 166:91–99

    Article  CAS  Google Scholar 

  5. Liu F, Huang J, Sun K, Yan C, Shen Y, Park J, Pu A, Zhou F, Liu X, Stride JA, Green MA, Hao X (2017) Beyond 8% ultrathin kesterite Cu 2 ZnSnS 4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact. NPG Asia Materials 9(7):e401

    Article  CAS  Google Scholar 

  6. Moon SH et al (2014) Printable, wide band-gap chalcopyrite thin films for power generating window applications. Sci Rep 4:4408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Deng T, Gotoh K, Takabe R, Xu Z, Yachi S, Yamashita Y, Toko K, Usami N, Suemasu T (2017) Boron-doped p-BaSi2/n-Si solar cells formed on textured n-Si (0 0 1) with a pyramid structure consisting of {1 1 1} facets. J Cryst Growth 475:186–191

    Article  CAS  Google Scholar 

  8. Yachi S et al (2017) Effect of p-BaSi2 layer thickness on the solar cell performance of p-BaSi2/n-Si heterojunction solar cells. Japanese Journal of Applied Physics 56(5S1):05DB03

    Article  Google Scholar 

  9. Deng T, Sato T, Xu Z, Takabe R, Yachi S, Yamashita Y, Toko K, Suemasu T (2018) P-BaSi2/n-Si heterojunction solar cells on Si (001) with conversion efficiency approaching 10%: comparison with Si (111). Appl Phys Express 11(6):062301

    Article  Google Scholar 

  10. Elhmaidi, Z.O., et al. Pulsed laser deposition of CZTS thin films, their thermal annealing and integration into n-Si/CZTS photovoltaic devices. In 2016 International Renewable and Sustainable Energy Conference (IRSEC). 2016. IEEE

  11. Sheng X et al (2013) Low-cost fabrication of Cu 2 ZnSnS 4 thin films for solar cell absorber layers. J Mater Sci Mater Electron 24(2):548–552

    Article  CAS  Google Scholar 

  12. Singh S, Katiyar AK, Midya A, Ghorai A, Ray SK (2017) Superior heterojunction properties of solution processed copper-zinc-tin-sulphide quantum dots on Si. Nanotechnology 28(43):435704

    Article  PubMed  CAS  Google Scholar 

  13. Song N, Young M, Liu F, Erslev P, Wilson S, Harvey SP, Teeter G, Huang Y, Hao X, Green MA (2015) Epitaxial Cu2ZnSnS4 thin film on Si (111) 4 substrate. Appl Phys Lett 106(25):252102

    Article  CAS  Google Scholar 

  14. Yeh M-Y, Lei PH, Lin SH, Yang CD (2016) Copper-zinc-tin-sulfur thin film using spin-coating technology. Materials 9(7):526

    Article  PubMed Central  CAS  Google Scholar 

  15. Gezgin SY, Houimi A, Kiliç HŞ (2019) Production and photovoltaic characterisation of n-Si/p-CZTS heterojunction solar cells based on a CZTS ultrathin active layers. Optik 199:163370

    Article  CAS  Google Scholar 

  16. Ziti A et al (2017) Study of kesterite CZTS thin films deposited by spin coating technique for photovoltaic applications. Superlattice Microst

  17. Moholkar A et al (2011) Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate. Sol Energy 85(7):1354–1363

    Article  CAS  Google Scholar 

  18. Xu J, Yang Y, Cao Z, Xie Z (2016) Preparations of Cu2ZnSnS4 thin films and Cu2ZnSnS4/Si heterojunctions on silicon substrates by sputtering. Optik-International Journal for Light and Electron Optics 127(4):1567–1571

    Article  CAS  Google Scholar 

  19. Moholkar A et al (2011) Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: solar cells. J Alloys Compd 509(27):7439–7446

    Article  CAS  Google Scholar 

  20. Cazzaniga AC et al Fabrication of thin film CZTS solar cells with pulsed laser deposition. 2016. Technical University of Denmark (DTU)

  21. Dikovska AO et al (2005) Thin ZnO films produced by pulsed laser deposition. J Optoelectron Adv Mater 7:1329–1334

    CAS  Google Scholar 

  22. Ghimbeu CM, Sima F, Ostaci RV, Socol G, Mihailescu IN, Vix-Guterl C (2012) Crystalline vanadium nitride ultra-thin films obtained at room temperature by pulsed laser deposition. Surf Coat Technol 211:158–162

    Article  CAS  Google Scholar 

  23. Đekić M et al (2017) Influence of deposition parameters on pulsed laser deposition of K0. 3MoO3 thin films. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina 48(1):1

    Google Scholar 

  24. Vakulov Z, Ivonin M, Zamburg EG, Klimin VS, Volik DP, Golosov DA, Zavadskiy SM, Dostanko AP, Miakonkikh AV, Clemente IE, Rudenko KV, Ageev OA (2018) Size effects in LiNbO3 thin films fabricated by pulsed laser deposition. J Phys Conf Ser 1124:022032

    Article  CAS  Google Scholar 

  25. Gezgi̇n, S.Y.ğ.t. and H.Ş. Kılıç, An improvement on the conversion efficiency of Si/CZTS solar cells by LSPR effect of embedded plasmonic Au nanoparticles. Opt Mater, 2020. 101: p. 109760

  26. Camara SM, Wang L, Zhang X (2013) Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology 24(49):495401

    Article  PubMed  CAS  Google Scholar 

  27. Yiğit Gezgin, S. and H.Ş. Kiliç, The electrical characteristics of ITO/CZTS/ZnO/Al and ITO/ZnO/CZTS/Al heterojunction diodes. Optik, 2019

  28. Gezgin SY, Kiliç HŞ (2019) Determination of electrical parameters of ITO/CZTS/CdS/Ag and ITO/CdS/CZTS/Ag heterojunction diodes in dark and illumination conditions. Opt Quant Electron 51(11):360

    Article  CAS  Google Scholar 

  29. Gezgin SY, Kılıç HŞ (2019) The electrical characteristics of ITO/CZTS/ZnO/Al and ITO/ZnO/CZTS/Al heterojunction diodes. Optik 182:356–371

    Article  CAS  Google Scholar 

  30. Tao J, Zhang K, Zhang C, Chen L, Cao H, Liu J, Jiang J, Sun L, Yang P, Chu J (2015) A sputtered CdS buffer layer for co-electrodeposited cu 2 ZnSnS 4 solar cells with 6.6% efficiency. Chem Commun 51(51):10337–10340

    Article  CAS  Google Scholar 

  31. Jamal RK, Hameed MA, Adem KA (2014) Optical properties of nanostructured ZnO prepared by a pulsed laser deposition technique. Mater Lett 132:31–33

    Article  CAS  Google Scholar 

  32. Feng W, Han J, Ge J, Peng X, Liu Y, Jian Y, Yuan L, Xiong X, Cha L, Liao C (2017) Influence of annealing temperature on CZTS thin film surface properties. J Electron Mater 46(1):288–295

    Article  CAS  Google Scholar 

  33. Gupta GK, Reddy V, Dixit A (2019) Impact of excess and disordered Sn sites on Cu2ZnSnS4 absorber material and device performance: a 119Sn Mössbauer study. Mater Chem Phys 225:410–416

    Article  CAS  Google Scholar 

  34. Yao L et al (2019) Reactive mechanism of Cu2ZnSnSe4 thin films prepared by reactive annealing of the cu/Zn metal layer in a SnSex+ se atmosphere. Crystals 9(1):10

    Article  CAS  Google Scholar 

  35. Zhong J et al (2014) Sulfurization induced surface constitution and its correlation to the performance of solution-processed cu 2 ZnSn (S, se) 4 solar cells. Sci Rep 4:6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen S et al (2011) Structural, electronic and defect properties of cu 2 ZnSn (S, se) 4 alloys. MRS Online Proceedings Library Archive 1370

  37. Yan C, Sun K, Liu F, Huang J, Zhou F, Hao X (2017) Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks. Sol Energy Mater Sol Cells 160:7–11

    Article  CAS  Google Scholar 

  38. Dai P, Shen X, Lin Z, Feng Z, Xu H, Zhan J (2010) Band-gap tunable (Cu2Sn) x/3 Zn 1− x S nanoparticles for solar cells. Chem Commun 46(31):5749–5751

    Article  CAS  Google Scholar 

  39. Chávez-Urbiola I et al (2019) Development and characterization of photodiode n-ZnO/p-Si by radio Frecuency sputtering, a sensor with low voltage operation and its response to visible and UV light. Thin Solid Films 669:364–370

    Article  CAS  Google Scholar 

  40. Ismail RA, Abeduljabbar NH, Fatehi M (2019) Effect of dipping time on the properties of Sb 2 S 3/Si heterojunction prepared by chemical bath deposition. Materials Research Express

  41. Kumar M, Kanjilal A, Som T (2013) Effect of grain-boundaries on electrical properties of n-ZnO: Al/p-Si heterojunction diodes. AIP Adv 3(9):092126

    Article  CAS  Google Scholar 

  42. Lee H et al (2010) Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles. Appl Phys Lett 96(15):79

    Google Scholar 

  43. Nasir E, Abass M (2016) Characterization, morphology and electrical properties of chemically deposited Nanocrystalline PbS/Si Heterojunction thin films. Chalcogenide Letters 13(6):271–279

    Google Scholar 

  44. Farag A et al (2014) Structural and electrical characteristics of n-InSb/p-GaAs heterojunction prepared by liquid phase epitaxy. J Alloys Compd 615:604–609

    Article  CAS  Google Scholar 

  45. Al-Maiyaly BK et al Synthesis and characterization study of n-Bi2O3/p-Si heterojunction dependence on thickness. In AIP Conference Proceedings. 2018. AIP Publishing LLC

  46. Patil S et al (2013) LPG sensing by p-polyaniline/n-PbS heterojunction junction capacitance structure. Sensors Actuators A Phys 201:387–394

    Article  CAS  Google Scholar 

  47. Yilmaz M et al (2019) Effect of NiOx’s film thickness on the electrical properties of Ni/p–NiOx/n-Si structures. Journal of Sandwich Structures & Materials:1099636219859198

  48. Soliman H et al (2012) Electronic and photovoltaic properties of au/pyronine G (Y)/p-GaAs/au: Zn heterojunction. J Alloys Compd 530:157–163

    Article  CAS  Google Scholar 

  49. Ashery, A., I. El Radaf, and M.M. Elnasharty, Electrical and dielectric characterizations of Cu 2 ZnSnSe 4/n-Si heterojunction. Silicon, 2018: p. 1–8

  50. Bedia F et al (2014) Electrical characterization of n-ZnO/p-Si heterojunction prepared by spray pyrolysis technique. Phys Procedia 55:61–67

    Article  CAS  Google Scholar 

  51. Soliman H et al (2008) Electrical transport mechanisms and photovoltaic characterization of cobalt phthalocyanine on silicon heterojunctions. Thin Solid Films 516(23):8678–8683

    Article  CAS  Google Scholar 

  52. Cheung S, Cheung N (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49(2):85–87

    Article  CAS  Google Scholar 

  53. Paul CA et al (2018) Exploration of organic additives-assisted vanadium pentoxide (V 2 O 5) nanoparticles for cu/nV 2 O 5/p-Si Schottky diode applications. Materials in Electronics, Journal of Materials Science, pp 1–8

    Google Scholar 

  54. Olyaee HGB, Foot PJ, Montgomery V (2015) Electrical properties and I–V characteristics of 5, 14-dihydro-5, 7, 12, 14-tetraazapentacene doped Schottky barrier diode. Journal of Theoretical and Applied Physics 9(4):315–319

    Article  Google Scholar 

  55. Orak İ, Kocyiğit A, Karataş Ş (2018) The analysis of the electrical and photovoltaic properties of Cr/p-Si structures using current-voltage measurements. Silicon 10(5):2109–2116

    Article  CAS  Google Scholar 

  56. Norde H (1979) A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 50(7):5052–5053

    Article  CAS  Google Scholar 

  57. Basman N (2017) Effect of a new methacrylic monomer on diode parameters of Ag/p-Si Schottky contact. Informacije MIDEM 46(4):190–196

    Google Scholar 

  58. Maiti R, Manna S, Midya A, Ray SK (2013) Broadband photoresponse and rectification of novel graphene oxide/n-Si heterojunctions. Opt Express 21(22):26034–26043

    Article  PubMed  CAS  Google Scholar 

  59. Yang G, Li YF, Yao B, Ding ZH, Deng R, Fang X, Wei ZP (2015) Alternative spectral Photoresponse in ap-Cu2ZnSnS4/n-GaN Heterojunction photodiode by modulating applied voltage. ACS Appl Mater Interfaces 7(30):16653–16658

    Article  CAS  PubMed  Google Scholar 

  60. Reddy VR et al (2017) Microstructural, electrical and frequency-dependent properties of au/p-Cu2ZnSnS4/n-GaN heterojunction. J Colloid Interface Sci 499:180–188

    Article  CAS  Google Scholar 

  61. Song Z, Liu Y, Wang Q, Yuan S, Yang Y, Sun X, Xin Y, Liu M, Xia Z (2018) Self-powered photodetectors based on a ZnTe–TeO 2 composite/Si heterojunction with ultra-broadband and high responsivity. J Mater Sci 53(10):7562–7570

    Article  CAS  Google Scholar 

  62. Tuan TTA, Kuo DH, Cao PT, Nguyen VS, Pham QP, Nghi VK, Tran NPL (2019) Electrical characterization of RF reactive sputtered p–mg-InxGa1− xN/n–Si hetero-junction diodes without using buffer layer. Coatings 9(11):699

    Article  CAS  Google Scholar 

  63. Tuan TTA, Kuo DH, Saragih AD, Li GZ (2017) Electrical properties of RF-sputtered Zn-doped GaN films and p-Zn-GaN/n-Si hetero junction diode with low leakage current of 10–9 A and a high rectification ratio above 105. Mater Sci Eng B 222:18–25

    Article  CAS  Google Scholar 

  64. Mollica, F., Optimization of ultra-thin Cu (In, Ga) Se2 based solar cells with alternative back-contacts. 2016, Université Pierre et Marie Curie-Paris VI

  65. Hartiti, B., H.J.T. Nkuissi, and S. Fadili, Enhancement of output parameters of Cu2ZnSnS4 (CZTS)-based solar cells: numerical simulation using AMPS-1D and SCAPS-1D programs

  66. Heriche H et al (2014) Thickness optimization of various layers of CZTS solar cell. Journal of New Technology and Materials 277(1747):1–4

    Google Scholar 

  67. Bouchama I, Ali-Saoucha S (2017) Effect of wide band-gap TCO properties on the bifacial CZTS thin-films solar cells performances. Optik-International Journal for Light and Electron Optics 144:370–377

    Article  CAS  Google Scholar 

  68. Espindola-Rodriguez M, Sylla D, Sánchez Y, Oliva F, Grini S, Neuschitzer M, Vines L, Izquierdo-Roca V, Saucedo E, Placidi M (2017) Bifacial kesterite solar cells on FTO substrates. ACS Sustain Chem Eng 5(12):11516–11524

    Article  CAS  Google Scholar 

  69. Ge J, Chu J, Jiang J, Yan Y, Yang P (2014) Characteristics of in-substituted CZTS thin film and bifacial solar cell. ACS Appl Mater Interfaces 6(23):21118–21130

    Article  CAS  PubMed  Google Scholar 

  70. Ge J, Yu Y, Ke W, Li J, Tan X, Wang Z, Chu J, Yan Y (2016) Improved performance of electroplated CZTS thin-film solar cells with bifacial configuration. ChemSusChem 9(16):2149–2158

    Article  CAS  PubMed  Google Scholar 

  71. Kim J-S, Kang J-K, Hwang D-K (2016) High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates. APL Materials 4(9):096101

    Article  CAS  Google Scholar 

  72. Shin B, Gunawan O, Zhu Y, Bojarczuk NA, Chey SJ, Guha S (2013) Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog Photovolt Res Appl 21(1):72–76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors kindly would like to thank,

- Scientific and Technical Research Council of Turkey (TUBITAK) for financial support via Grant No. 1649B031503748,

- Selçuk University, High Technology Research and Application Center and.

Selçuk University, Laser Induced Proton Therapy Application and Research Center for supplying with Infrastructure and.

- Selçuk University, Scientific Research Projects Coordination (BAP) Unit for grands via projects with references of 18401178, 18401124 and 15201070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdi Şükür Kiliç.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gezgin, S.Y., Houimi, A., Mercimek, B. et al. The Effect of CZTS Ultrathin Film Thickness on the Electrical Characteristic of CZTS/Si Heterojunction Solar Cells in the Darkness and under the Illumination Conditions. Silicon 13, 3555–3567 (2021). https://doi.org/10.1007/s12633-020-00847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00847-x

Keywords

Navigation