Skip to main content
Log in

Morphological, Mechanical Property Analysis and Comparative Study over Structural Properties of CVD TiN Film Grown under Different Substrate Temperature in Nitrogen Gas Atmosphere

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Titanium Nitride (TiN) thin films were deposited by thermal chemical vapor deposition process (CVD) over Si (100) substrate under different substrate temperatures. Morphological, mechanical, and structural properties were characterized by different techniques e.g. SEM, AFM, Nanoindentation and XRD. SEM images reveal the presence of agglomerated particles over the surface and AFM images reveal the enhancement of surface roughness with higher deposition temperature. The analysis of electrochemical polarization and electrochemical properties of TiN coatings reveals decrease in corrosion resistance with increase in process temperature. The nanoindentation analysis has confirmed that TiN coating possess maximum fracture toughness (KC), hardness (H), and Young’s modulus (Ef) when synthesized at the temperature of 1150 °C. For comparative study, an analysis over structural properties using different models e.g. UDM, UDEM, SSP etc. have been used in this study. The data analysis of TiN coatings are carried out by using Origin 9.0 software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Hove RP, Sierevelt IN, Van Royen BJ, Nolte PA (2015) Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature. Biomed Res Int Article ID 485975

  2. Mezger PR, Creugers NHJ (1992) Titanium nitride coatings in clinical dentistry. J Dent 20:342–344

    CAS  PubMed  Google Scholar 

  3. Gotman I, Gutmanas EY (2014) Titanium nitride-based coatings on implantable medical devices. Adv Biom Devices Med 1:53–73

    Google Scholar 

  4. Pandey SK, Pandey SK, Awasthi V, Gupta M, Deshpande UP, Mukherjee S (2013) Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films. Appl Phys Lett 103:072109

    Google Scholar 

  5. Wolfe DE, Singh J (1999) Microstructural evolution of titanium nitride (TiN) coatings produced by reactive ion beam-assisted, electron beam physical vapor deposition (RIBA, EB-PVD). J Mater Sci 34:2997–3006

    CAS  Google Scholar 

  6. Shin YH, Shimogaki Y (2004) Chemical vapor deposition of TiAlN film by using titanium tetrachloride, Dimethylethylamine Alane and Ammonia gas for ULSI cu diffusion barrier application. Jap J App Phy 43:8253–8257

    CAS  Google Scholar 

  7. Musher JN, Gordon RG (1996) Atmospheric pressure chemical vapor deposition of titanium nitride from Tetrakis (diethylamido) titanium and Ammonia. J Electrochem Soc 143:736

    CAS  Google Scholar 

  8. Fix R, Gordon R, Hoffman D (1989) Titanium nitride thin films: properties and Apcvd synthesis using organometallic precursors. MRS Proc 168:357

    Google Scholar 

  9. Huang HH, Hon MH (2002) Effect of N2 addition on growth and properties of titanium nitride films obtained by atmospheric pressure chemical vapor deposition. Thin Solid Films 416:54–61

    CAS  Google Scholar 

  10. Halliday D, Resnick R, Krane KS (1992) Physics. John Wiley & Sons, New York

    Google Scholar 

  11. Sears FW, Zemansky MW, Young HD (1987) University physics. Addison–Wesley, London

    Google Scholar 

  12. Huang HH, Hon MH (2001) Effect of H2 addition on characteristics of TiN films deposited by APCVD. J Cryst Growth 225:540–543

    CAS  Google Scholar 

  13. Newport A, Carmalt CJ, Parkin IP, Oneill SA (2002) The dual source APCVD of titanium nitride thin films from reaction of hexamethyldisilazane and titanium tetrachloride. J Mater Chem 12:1906–1909

    CAS  Google Scholar 

  14. Schneider R, Weigert F, Lesnyak V, Leubner S, Lorenz T, Behnke T, Dubavik A, Joswig JO, Resch-Genger U, Gaponikc N, Eychmüllerc A (2016) pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O. Phys Chem Chem Phys 18:19083–19093

    CAS  PubMed  Google Scholar 

  15. Sarkar S, Das R (2018) Shape effect on the elastic properties of Ag nanocrystals. Micro Nano Lett 13:312–315

    CAS  Google Scholar 

  16. Thool GS, Singh AK, Singh RS, Gupta A, Susan MABH (2014) Facile synthesis of flat crystal ZnO thin films by solution growth method: a micro-structural investigation. J Saudi Chem Soc 18:712–721

    Google Scholar 

  17. Mahmood NB, Al-Shakarchi EK (2011) Three techniques used to produce BaTiO3 fine powder. J Mod Phys 2:1420–1428

    CAS  Google Scholar 

  18. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  19. Guinier A (1994) Imperfect crystals and amorphous bodies. Dover, New York

    Google Scholar 

  20. Das S, Guha S, Das PP, Ghadai RK (2020) Analysis of morphological, microstructural, electrochemical and nano mechanical characteristics of TiCN coatings prepared under N2 gas flow rate by chemical vapour deposition (CVD) process at higher temperature. Ceram Int 46:10292–10298

    CAS  Google Scholar 

  21. Das S, Guha S, Ghadai R, Kumar D, Swain BP (2017) Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films. Appl Phys A Mater Sci Process 123:412–416

    Google Scholar 

  22. Guha S, Das S, Bandyopadhyay A, Das S, Swain BP (2018) Investigation of mechanical properties of CVD grown titanium silicon nitride thin films under reduced atmosphere. Appl Phys A Mater Sci Process 124:35–43

    Google Scholar 

  23. Das S, Guha S, Ghadai R, Swain BP (2020) A comparative analysis over different properties of TiN, TiAlN and TiAlSiN thin film coatings grown in nitrogen gas atmosphere. Mater Chem Phy 258:123866

    Google Scholar 

  24. Amirzada MR, Tatzel A, Viereck V (2016) Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates. Appl Nanosci 6:215–222

    CAS  Google Scholar 

  25. Delhez R, de Keijser TH, Mittemeijer EJ (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius Z Anal Chem 312:1–16

    CAS  Google Scholar 

  26. Das R, Nath SS, Bhattacharjee R (2010) Preparation of linoleic acid capped gold nanoparticles and their spectra. Phys E 43:224–227

    CAS  Google Scholar 

  27. Dey PC, Das R (2018) Effect of silver doping on the elastic properties of CdS nanoparticles. Indian J Phys 92:1099–1108

    CAS  Google Scholar 

  28. Yogamalara R, Srinivasan R, Vinu A, Ariga K, Bose AC (2009) X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun 149:1919–1923

    Google Scholar 

  29. Schumacher G, Dittrich M (2014) Evolution of crystallite size, lattice parameter and internal strain in Al precipitates during high energy ball milling of partly amorphous Al87Ni8La5 alloy. Mater Sci Eng A 604:27–33

    Google Scholar 

  30. Vashista M, Paul S (2013) Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces. Philos Mag 92:4194–4204

    Google Scholar 

  31. Hall WH (1949) X-ray line broadening in metals. Proc Phys Soc Sect A 62:741–743. https://doi.org/10.1088/0370-1298/62/11/110

    Article  Google Scholar 

  32. Nath D, Singh F, Das R (2020) X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater Chem Phys 239:122021

    CAS  Google Scholar 

  33. Sarkar S, Das R (2018) Determination of structural elements of synthesized silver nanohexagon from X-ray diffraction analysis. Indian J Pure Appl Phys 56:765–772

    Google Scholar 

  34. Wang A, Shang SL, He M, Du Y et al (2014) Temperature-dependent elastic stiffness constants of fcc-based metal nitrides from first-principles calculations. J Mater Res 49:424–432

    CAS  Google Scholar 

  35. Mote VD, Purushotham Y, Dole BN (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:6–14

    Google Scholar 

  36. Balzar D, Ledbetter H (1993) Voigt-function modeling in fourier analysis of size- and strain-broadened X-ray diffraction peaks. J Appl Crystallogr 26:97–103

    Google Scholar 

  37. Hepp A, Baerlocher C (1988) Learned peak shape functions for powder diffraction data. Aust J Phys 41:229–236

    CAS  Google Scholar 

  38. Halder NC, Wagner CNJ (1966) Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr 20(2):312–331

    CAS  Google Scholar 

  39. Motevalizadeh L, Heidary Z, Abrishami ME (2014) Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods. Bull Mater Sci 37(3):397–405

    CAS  Google Scholar 

  40. Chan YC, Chen HW, Chao PS, Duh JG, Lee JW (2013) Microstructure control in TiAlN/SiNx multilayers with appropriate thickness ratios for improvement of hardness and anti-corrosion characteristics. Vacuum 87:195–199

    CAS  Google Scholar 

  41. Jung DH, Moon KI, Shin SY, Lee CS (2013) Influence of ternary elements (X = Si, B, Cr) on TiAlN coating deposited by magnetron sputtering process with single alloying targets. Thin Solid Films 546:242–245

    CAS  Google Scholar 

  42. Guha S, Das S, Bandyopadhyay A, Das S, Swain BP (2018) Investigation of structural network and mechanical properties of titanium silicon nitride (TiSiN) thin films. J Alloy Compd 731:347–353

    CAS  Google Scholar 

  43. Chang L, Zhang LC (2009) Deformation mechanism at pop-out in monocrystalline silicon under nanoindentation. Acta Mater 57:2148–2153

    CAS  Google Scholar 

  44. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Google Scholar 

  45. Li X, Bhusan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48:11–36

    CAS  Google Scholar 

  46. Maxwell AS, Owen-Jones S, Jennett NM (2004) Measurement of Young’s modulus and Poisson’s ratio of thin coatings using impact excitation and depth-sensing indentation. Rev Sci Instrum 75:970–975

    CAS  Google Scholar 

  47. Lee JH, Nathanael AJ, Hong SI (2012) Effect of nitrogen flow rate on the structure and properties of TiN thin films deposited onto β-type Ti-15Mo-3Nb-3Al-0.2Si alloy substrates by reactive magnetron sputtering. Adv Mater Res 557–559:1998–2001

    Google Scholar 

  48. Pellicer E, Pane S, Sivaraman KM, Ergeneman O, Suri S, Bar MD, Nelson BJ, Sort J (2011) Effects of the anion in glycine-containing electrolytes on the mechanical properties of electrodeposited co-Ni films. Mater Chem Phys 130:1380–1386

    CAS  Google Scholar 

  49. Medeiros BB, Medeiros MM, Fornell J, Sort J, Baro MD, Jorge Junior AM (2015) Nanoindentation response of cu-Ti based metallic glasses: comparison between as-cast, relaxed and de vitrified states. J Non-Cryst Solids 425:103–109

    CAS  Google Scholar 

  50. Hynowska A, Pellicer E, Fornell J, Gonzalez S, Steenberge N, Surinach S, Gebert A, Calin M, Eckert J, Baro MD, Sort J (2012) Nanostructured ß-phase Ti-31.0Fe-9.0Sn and sub-mm structured Ti-39.3Nb-13.3Zr-10.7Ta alloys for biomedical applications: microstructure benefits on the mechanical and corrosion performances. Mater Sci Eng C 32:2418–2425

    CAS  Google Scholar 

  51. Bao YW, Wang W, Zhou YC (2004) Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements. Acta Mater 52:5397–5404

    CAS  Google Scholar 

  52. Zhang S (2010) Nanostructured thin films and coatings: mechanical properties. CRC Press, USA

    Google Scholar 

  53. Mott PH, Roland CM (2009) Limits to Poisson’s ratio in isotropic materials. Phys Rev B 80:132104

    Google Scholar 

  54. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64:533–538

    CAS  Google Scholar 

  55. Nihara K, Morena R, Hasselman DPH (1982) Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett 1:13–16

    Google Scholar 

  56. Casellas D, Feder A, Llanes L, Anglada M (2001) Fracture toughness and mechanical strength of Y-TZP/PSZ ceramics. Scripta Mater 45:213–220

    CAS  Google Scholar 

  57. Laugier MT, Palmqvist (1991) Indentation crack analyses for toughness determination in WC-co composites. J Mater Sci Lett 32:77–84

    Google Scholar 

  58. Ouchterlony F (1977) Symmetric cracking of a wedge by concentrated loads. Int J Eng Sci 15:109–116

    Google Scholar 

  59. Pharr GM (1998) Measurement of mechanical properties by ultra-low load indentation. Mat Sci Eng A 253:151–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spandan Guha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Guha, S., Ghadai, R. et al. Morphological, Mechanical Property Analysis and Comparative Study over Structural Properties of CVD TiN Film Grown under Different Substrate Temperature in Nitrogen Gas Atmosphere. Silicon 14, 183–199 (2022). https://doi.org/10.1007/s12633-020-00807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00807-5

Keywords

Navigation