Skip to main content

Structural, Morphological and Mechanical Property Analysis of TiAlN Thin Film Coating Deposited by CVD Technique

  • Conference paper
  • First Online:
Recent Advances in Thermofluids and Manufacturing Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In this experimental work titanium aluminium nitride (TiAlN) has been successfully synthesized over silicon substrate (p-type c-Si (100)) by chemical vapour deposition (CVD) process. The EDS results confirm presence of residual O2 in coating. Composition wise Ti is found to be maximum followed by Al and N. The morphological analysis by SEM confirms the formation of smooth coating whereas AFM analysis helps to determine the particle size of TiAlN coating. The coating thickness is around 7 µm. XRD analysis confirms the presence (111), (200), (220) and (311) crystal planes. Different nanomechanical properties of TiAlN coating have been determined by nanoindentation process and it has been found that the hardness and Young’s modulus of TiAlN coating are 32.97 and 277.98 GPa, respectively. The data analysis of TiAlN coating has been done by Origin 9.0 software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damond E (2000) Revêtements PVD. Durs Pour la mécanique. Développement d’un réacteur PVD Industriel et de Deux revêtements Multicouches associés. Mém. DPE En Génie Procédés

    Google Scholar 

  2. Das RK, Sahoo AK, Kumar R, Roy S, Mishra PC, Mohanty T (2019) MQL assisted cleaner machining using PVD TiAlN coated carbide insert: comparative assessment. Indian J Eng Mater Sci 26:311–325

    Google Scholar 

  3. Jin N, Yang Y, Luo X, Xia Z (2013) Development of CVD Ti-containing films. Prog Mater Sci 58:1490–1533

    Article  Google Scholar 

  4. Shum P, Li K, Zhou Z, Shen Y (2004) •Structural and mechanical properties of titanium–aluminium–nitride films deposited by reactive close-field unbalanced magnetron sputtering. Surf Coat Technol 185:245–253

    Article  Google Scholar 

  5. Veprek S, Veprek-Heijman MGJ, Karvankova P, Prochazka J (2005) Different approaches to super hard coatings and nanocomposites. Thin Solid Films 476:1–29

    Article  Google Scholar 

  6. Barshilia HC, Surya Prakash M, Jain A, Rajam KS (2005) Structure, hardness and thermal stability of TiAlN and nano layered TiAlN/CrN multilayer films. Vacuum 77:169–179

    Google Scholar 

  7. Barshilia HC, Rajam KS (2004) Raman spectroscopy studies on the thermal stability of TiN, CrN, TiAlN coatings and nano layered TiN/CrN, TiAlN/CrN multilayer coatings. J Mater Res 19:3196–3205

    Article  Google Scholar 

  8. Bhaduri D, Kuar AS, Sarkar S, Biswas SK, Mitra S (2009) Electro discharge machining of titanium nitride-aluminium oxide composite for optimum process criterial yield. Mater Manuf Processes 24:1312–1320

    Article  Google Scholar 

  9. Posti E, Nieminen I (1989) Coating thickness effects on the life of titanium nitride PVD coated tools. Mater Manuf Processes 4:239–252

    Article  Google Scholar 

  10. Schneider R, Weigert F, Lesnyak V, Leubner S, Lorenz T, Behnke T, Dubavik A, Joswig J-O, Resch-Genger U, Gaponikc N, Eychmüllerc A (2016) pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O. Phys Chem Chem Phys 18:19083–19093

    Article  Google Scholar 

  11. Sarkar S, Das R (2018) Determination of structural elements of synthesized silver nano-hexagon from X-ray diffraction analysis. Indian J Pure Appl Phys 56:765–772

    Google Scholar 

  12. Sarkar S, Das R (2018) Shape effect on the elastic properties of Ag nanocrystals. Micro Nano Lett 13:312–315

    Article  Google Scholar 

  13. Thool GS, Singh AK, Singh RS, Gupta A, Susan MABH (2014) Facile synthesis of flat crystal ZnO thin films by solution growth method: a micro-structural investigation. J Saudi Chem Soc 18:712–721

    Article  Google Scholar 

  14. Mahmood NB, Al-Shakarchi EK (2011) Three techniques used to produce BaTiO3 fine powder. J Mod Phys 2:1420–1428

    Article  Google Scholar 

  15. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Addison-Wesley Publishing Company, Mass

    Google Scholar 

  16. Guinier A (1994) X-ray diffraction in crystals imperfect crystals and amorphous bodies. Dover, New York

    Google Scholar 

  17. Chen HJ, Wu K-L, Yan B-H (2013) Dry electrical discharge coating process on aluminum by using titanium powder compact electrode. Mater Manuf Processes 28:1286–1293

    Article  Google Scholar 

  18. Santos CIL, Carvalho MS, Raphael E, Dantas C, Ferrari JL, Schiavon MA (2016) Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe quantum dots. Mater Res 9:1407–1417

    Article  Google Scholar 

  19. Mohamed MB, Tonti D, Al-Salman A, Chemseddine A, Chergui M (2005) Synthesis of high quality zinc blende CdSe nanocrystals. J Phys Chem B 109:10533–10537

    Article  Google Scholar 

  20. Delhez R, de Keijser TH, Mittemeijer EJ (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius Z Anal Chem 312:1–16

    Google Scholar 

  21. Das R, Nath SS, Bhattacharjee R (2010) Preparation of linoleic acid capped gold nanoparticles and their spectra. Physica E 43:224–227

    Article  Google Scholar 

  22. Dey PC, Das R (2018) Effect of silver doping on the elastic properties of CdS nanoparticles. Indian J Phys 92(9):1099–1108

    Article  Google Scholar 

  23. Das S, Guha S, Ghadai R, Kumar D, Swain BP (2017) Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films. Appl Phys A 123:412

    Article  Google Scholar 

  24. Das S, Guha S, Ghadai R, Sharma A (2021) Influence of nitrogen gas over microstructural, vibrational and mechanical properties of CVD Titanium nitride (TiN) thin film coating. Ceram Int 47:16809–16819

    Article  Google Scholar 

  25. Das S, Guha S, Ghadai R, Swain BP (2021) A comparative analysis over different properties of TiN, TiAlN and TiAlSiN thin film coatings grown in nitrogen gas atmosphere. Mater Chem Phys 258:123866

    Article  Google Scholar 

  26. Das S, Guha S, Ghadai R, Sharma A, Chatterjee S (2022) Morphological, Mechanical property analysis and comparative study over structural properties of CVD TiN film grown under different substrate temperature in nitrogen gas atmosphere. SILICON 14:183–199

    Article  Google Scholar 

  27. Das S, Kumar D, Borah R, Dutta A, Guha S (2022) Impact of elevated temperature over different properties of CVD SiCN coating developed in Nitrogen gas atmosphere. Silicon

    Google Scholar 

  28. Tagliente MA, Massaro M (2008) Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nucl Instrum Methods Phys Res B 266:1055–1061

    Article  Google Scholar 

  29. Jacob R, Isac J (2015) X-ray diffraction line profile analysis of Ba0.6Sr0.4FexTi(1-x) O3-δ, (x=0.4). Int J Chem Stud 2:12–21

    Google Scholar 

  30. Mahalingam T, Dhanasekaran V, Chandramohan R, Rhee JK (2012) Microstructural properties of electrochemically synthesized ZnSe thin films. J Mater Sci 47:1950–1957

    Article  Google Scholar 

  31. Zak AK, Abrishami E, Majid WHA, Yousefi R, Hosseini SM (2011) Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram Int 37:393–398

    Article  Google Scholar 

  32. Das R, Sarkar S (2015) Determination of intrinsic strain in poly(vinylpyrrolidone)-capped silver nano-hexapod using X-ray diffraction technique. Curr Sci 109:775–778

    Article  Google Scholar 

  33. Warren BE, Averbach BL (1952) The Separation of Stacking Fault Broadening in Cold‐Worked Metals. J Appl Phys 23:497

    Article  Google Scholar 

  34. Balzar D, Ledbetter H (1993) Voigt-function modeling in Fourier analysis of size-and strain-broadened X-ray diffraction peaks. J Appl Crystallogr 26:97–103

    Article  Google Scholar 

  35. Hall WH (1949) X-ray line broadening in metals. Proc Phys Soc Sect A 62:741–743

    Article  Google Scholar 

  36. Nath D, Singh F, Das R (2020) X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater Chem Phys 239:122021

    Article  Google Scholar 

  37. Tasnádi F, Abrikosov AI, Rogström L, Almer J, Johansson MP, Odén M (2010) Significant elastic anisotropy in Ti1− xAlxN alloys. Appl Phys Lett 97:231902

    Article  Google Scholar 

  38. Mote VD, Purushotham Y, Dole BN (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:6–14

    Article  Google Scholar 

  39. Guha S, Das S, Bandyopadhyay A, Das S, Swain BP (2018) Investigation of mechanical properties of CVD grown titanium silicon nitride thin films under reduced atmosphere. Appl Phys A 124:35

    Article  Google Scholar 

  40. Das S, Guha S, Das PP, Ghadai RK (2020) Analysis of morphological, microstructural, electrochemical and nano mechanical characteristics of TiCN coatings prepared under N2 gas flow rate by chemical vapour deposition (CVD) process at higher temperature. Ceram Int 46:10292–10298

    Article  Google Scholar 

  41. Guha S, Das S, Bandyopadhyay A, Das S, Swain BP (2018) Investigation of structural network and mechanical properties of Titanium silicon nitride (TiSiN) thin films. J Alloy Comp 731:347–353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spandan Guha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guha, S., Das, S. (2023). Structural, Morphological and Mechanical Property Analysis of TiAlN Thin Film Coating Deposited by CVD Technique. In: Revankar, S., Muduli, K., Sahu, D. (eds) Recent Advances in Thermofluids and Manufacturing Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-4388-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4388-1_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4387-4

  • Online ISBN: 978-981-19-4388-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics