Skip to main content
Log in

Performance Tuning and Reliability Analysis of the Electrostatically Configured Nanotube Tunnel FET with Impact of Interface Trap Charges

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper examines, an electrostatically configured Nano-Tube Tunnel Field-Effect Transistor (ED-NTTFET). During the fabrication process, different charges such as fixed charge, oxide trapped charge, and interface trapped charge have been produced at the gate oxide interface. So the effect of positive and negative interface trapped charge (+ITC & -ITC) has been proposed for the first time for electrostatic doped-based Nano-Tube TFET (ED-NTTFET). There are two types of techniques, charge plasma (EP) based technique and electrostatic doped (ED) technique is used to produce the induced charge in the intrinsic channel region. In the charged plasma (CP) technique, the metal work-function is used to produce the induced charge while in the electrostatic doped (ED) technique electrostatic voltage is applied across the source and drain side to produce the induced charge in the intrinsic channel region. Analysis of the various device parameters such as hole/electron concentration, energy diagram, electric field, tunneling rate, driving current, OFF current, ON current, ION/IOFF, threshold voltage, and average sub-threshold slope in the presence of interface trapped charge (ITC). Due to positive interface trapped charge electric field and band to band tunneling rates are improved. So the drain current of the device also improved from the 2.94*10−5 A/um2 to 5.35*10−5A/um2. Linearity parameters such as second & third order trans-conductance (gm2 & gm3), second & third order voltage intercept point (VIP2 & VIP3), second & third order harmonics distortions (HD2 & HD3) and intermodulation distortions (IMD) have been discussed. The negative interface trapped charge (-ITC) degrades the linearity parameter of the device and the positive interface trapped charge (+ITC) improves the linearity parameter of the device. The proposed electrostatic doped nano-tube TFET (ED-NTTFET) produced higher cut-off frequency at lowers operating gate voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan R-H, Ourmazd A, Lee KF (1992) Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans Electron Devices 39(7):1704–1710. https://doi.org/10.1109/16.141237

    Article  CAS  Google Scholar 

  2. Schaller RR (1997) Moore’s law: past, present and future. IEEE Spectr 34(6):52–59. https://doi.org/10.1109/6.591665

    Article  Google Scholar 

  3. Ieong M, Doris B, Kedzierski J, Rim K, Yang M (2004) Silicon device scaling to the sub-10-nm regime. Science 306(5704):2057–2060. https://doi.org/10.1126/science.1100731

    Article  CAS  PubMed  Google Scholar 

  4. Mikolajick T, Häublein V, Ryssel H (1997) The effect of random dopant fluctuations on the minimum channel length of short-channel MOS transistors. Appl Phys A Mater Sci Process 64(6):555–560. https://doi.org/10.1007/s003390050516

    Article  CAS  Google Scholar 

  5. Shin C, Sun X, Liu TK (2009) Study of random-dopant-fluctuation (RDF) effects for the Trigate bulk MOSFET. IEEE Trans Electron Devices 56(7):1538–1542. https://doi.org/10.1109/TED.2009.2020321

    Article  Google Scholar 

  6. Chatzikyriakou E, Redman-White W, Groot CHD (2017) Total ionizing dose, random dopant fluctuations, and its combined effect in the 45nm PDSOI node. Microelectron Reliab 68:21–29. https://doi.org/10.1016/j.microrel.2016.11.007

    Article  CAS  Google Scholar 

  7. Yoon J, Baek R (2018) Study on random dopant fluctuation in Core–Shell tunneling field-effect transistors. IEEE Trans Electron Devices 65(8):3131–3135. https://doi.org/10.1109/TED.2018.2846782

    Article  CAS  Google Scholar 

  8. Damrongplasit N, Kim SH, Liu TK (2013) Study of random dopant fluctuation induced variability in the raised-Ge-source TFET. IEEE Electron Device Lett 34(2):184–186. https://doi.org/10.1109/LED.2012.2235404

    Article  CAS  Google Scholar 

  9. Saurabh S, Kumar MJ (2016) Fundamentals of tunnel field-effect transistors. CRC Press, Boca Raton. https://doi.org/10.1201/9781315367354

    Book  Google Scholar 

  10. Mamidala MK, Vishnoi R, Pandey P (2016) Tunnel field-effect transistors (TFET): Modelling and simulation. Wiley, West Sussex

    Book  Google Scholar 

  11. Gupta AK, Raman A, Kumar N (2019) Cylindrical Nanowire- TFET with Core-Shell Channel Architecture: Design and Investigation. Silicon: 1–8. https://doi.org/10.1007/s12633-019-00331-1

  12. Sahay S, Kumar MJ (2017) Nanotube Junctionless FET: proposal, design, and investigation. IEEE Trans Electron Devices 64(4):1851–1856. https://doi.org/10.1109/TED.2017.2672203

    Article  Google Scholar 

  13. Chen ZX, Yu HY, Singh N, Shen NS, Sayanthan RD, Lo GQ, Kwong DL (2009) Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires. IEEE Electron Device Lett 30(7):754–756. https://doi.org/10.1109/LED.2009.2021079

    Article  CAS  Google Scholar 

  14. Krishnamohan T, Kim D, Raghunathan S, Saraswat K (2008) Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and 60 mV/dec subthreshold slope. Proc. IEEE Int. Electron Devices Meeting: 1–3, https://doi.org/10.1109/IEDM.2008.4796839

  15. Kumar N, Raman A (2019) Design and investigation of charge-plasma-based work function engineered dual-metal-heterogeneous gate Si-Si0.55Ge0.45 GAA-cylindrical NWTFET for Ambipolar analysis. IEEE Trans Electron Devices 66(3):1468–1474. https://doi.org/10.1109/TED.2019.2893224

    Article  CAS  Google Scholar 

  16. Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling fieldeffect transistors. IEEE Trans Electron Devices 57(9):2317–2319. https://doi.org/10.1109/TED.2010.2052167

    Article  Google Scholar 

  17. Kondekar PN, Nigam K, Pandey S, Sharma D (2016) Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE Trans Electron Devices 64(2):412–418. https://doi.org/10.1109/TED.2016.2637638

    Article  Google Scholar 

  18. Gupta AK, Raman A, Kumar N (2019) Design and investigation of a novel charge plasma-based Core-Shell ring-TFET: analog and linearity analysis. IEEE Trans Electron Devices 66(8):3506–3512. https://doi.org/10.1109/TED.2019.2924809

    Article  CAS  Google Scholar 

  19. Kumar N, Mushtaq U, Amin SI, Anand S (2019) Design and performance analysis of dual-gate all around core-shell nanotube TFET. Superlattices Microstruct 125:356–364. https://doi.org/10.1016/j.spmi.2018.09.012

    Article  CAS  Google Scholar 

  20. Mallik K, Falster RJ, Wilshaw PR (2003) Semi-insulating’ silicon using deep level impurity doping: problems and potential. Semiconductor Sci Technol 18(6):517. https://doi.org/10.1088/0268-1242/18/6/321

    Article  CAS  Google Scholar 

  21. Hasan S, Wang J, Lundstrom M (2004) Device design and manufacturing issues for 10 nm-scale MOSFETs: a computational study. Solid State Electron 48(6):867–875. https://doi.org/10.1016/j.sse.2003.12.022

    Article  CAS  Google Scholar 

  22. Zubel I (1998) Silicon anisotropic etching in alkaline solutions II on the influence of anisotropy on the smoothness of etched surfaces. Sensors Actuators A Phys 70(3):260–268. https://doi.org/10.1016/S0924-4247(98)00142-3

    Article  CAS  Google Scholar 

  23. Gilmer GH, De La Rubia TD, Stock DM, Jaraiz M (1995) Diffusion and interactions of point defects in silicon: molecular dynamics simulations. Nucl Instrum Methods Phys Res, Sect B 102(1–4):247–255. https://doi.org/10.1016/0168-583X(95)80150-K

    Article  CAS  Google Scholar 

  24. Madan J, Chaujar R (2017) Numerical simulation of N+ source pocket PIN-GAA-tunnel FET: impact of interface trap charges and temperature. IEEE Trans Electron Devices 64(4):1482–1488. https://doi.org/10.1109/TED.2017.2670603

    Article  Google Scholar 

  25. Tong HD, Chen S, van der Wiel WG, Carlen ET, van den Berg A (2009) Novel top-down wafer-scale fabrication of single crystal silicon nanowires. Nano Lett 9(3):1015–1022. https://doi.org/10.1021/nl803181x

    Article  CAS  PubMed  Google Scholar 

  26. Gupta AK, Raman A, Kumar N (2020) Charge-plasma-based negative capacitance ring-FET: design, investigation and reliability analysis. J Elec Mater 49:4852–4863. https://doi.org/10.1007/s11664-020-08205-8

    Article  CAS  Google Scholar 

  27. Kumar N, Raman A (2019) Performance assessment of the charge-plasma-based cylindrical GAA vertical nanowire TFET with impact of Interface trap charges. IEEE Trans Electron Devices 66(10):4453–4460. https://doi.org/10.1109/TED.2019.2935342

    Article  CAS  Google Scholar 

  28. ATLAS (2011) User’s manual, version 5. SILVACO, Santa Clara

    Google Scholar 

  29. Narang R, Saxena M, Gupta RS, Gupta M (2011) Linearity and analog performance analysis of double gate tunnel FET: effect of temperature and gate stack. Int J VLSI Design Commun Syst 2(3):185. https://doi.org/10.1007/978-3-642-22543-7_47

    Article  Google Scholar 

  30. Chandan BV, Dasari S, Yadav S, Sharma D (2018) Approach to suppress ambipolarity and improve RF and linearity performances on ED-tunnel FET. IET Micro Nano Letters 13(5):684–689. https://doi.org/10.1049/mnl.2017.0814

    Article  CAS  Google Scholar 

  31. Upasana NR, Saxena M, Gupta M (2016) Linearity and analog performance realization of energy-efficient TFET-based architectures: an optimization for RFIC design. IETE Tech Rev 33(1):23–28. https://doi.org/10.1080/02564602.2015.1043153

    Article  Google Scholar 

  32. Verma M, Tirkey S, Yadav S, Sharma D, Yadav DS (2017) Performance assessment of a novel vertical dielectrically modulated TFET-based biosensor. IEEE Trans Electron Devices 64(9):3841–3848. https://doi.org/10.1109/TED.2017.2732820

    Article  CAS  Google Scholar 

  33. Soni D, Sharma D, Yadav S, Aslam M, Sharma N (2018) Performance improvement of doped TFET by using plasma formation concept. Superlattice Microst 113:97–109. https://doi.org/10.1016/j.spmi.2017.10.012

    Article  CAS  Google Scholar 

  34. Chauhan SS (2018) A new design approach to improve DC, analog/RF and linearity metrics of vertical TFET for RFIC design. Superlattice Microst 122:286–295. https://doi.org/10.1016/j.spmi.2018.07.036

    Article  CAS  Google Scholar 

  35. Chandan BV, Nigam K, Sharma D, Pandey S (2018) Impact of interface trap charges on dopingless tunnel FET for enhancement of linearity characteristics. Appl Phys A 124(7):503. https://doi.org/10.1007/s00339-018-1923-8

    Article  CAS  Google Scholar 

  36. Vanlalawmpuia K, Bhowmick B 2019 Linearity performance analysis due to lateral straggle variation in hetero-stacked TFET. Silicon: 1-7. https://doi.org/10.1007/s12633-019-00189-3

  37. Narwal S, Chauhan SS (2019) Investigation of RF and linearity performance of electrode work-function engineered HDB vertical TFET. Micro Nano Lett 14(1):17–21. https://doi.org/10.1049/mnl.2018.5307

    Article  CAS  Google Scholar 

  38. Narang R, Saxena M, Gupta M (2019) Exploring the applicability of well optimized dielectric pocket tunnel transistor for future low power applications. Superlattice Microst 126:8–16. https://doi.org/10.1016/j.spmi.2018.12.005

    Article  CAS  Google Scholar 

  39. Kumar S, Singh KS, Nigam K, Tikkiwal VA, Chandan BV (2019) Dual-material dual-oxide double-gate TFET for improvement in DC characteristics, analog/RF and linearity performance. Appl Phys A 125(5):353. https://doi.org/10.1007/s00339-019-2650-5

    Article  CAS  Google Scholar 

  40. Paras N, Chauhan SS 2019 Insights into the DC, RF/analog and linearity performance of vertical tunneling based TFET for low-power applications. Microelectronic Eng: 111043. https://doi.org/10.1016/j.mee.2019.111043

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Gupta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Raman, A. & Kumar, N. Performance Tuning and Reliability Analysis of the Electrostatically Configured Nanotube Tunnel FET with Impact of Interface Trap Charges. Silicon 13, 4553–4564 (2021). https://doi.org/10.1007/s12633-020-00777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00777-8

Keywords

Navigation