Skip to main content
Log in

Novel and Highly Efficient Conversion of Carbon Dioxide to Cyclic Carbonates Using Benzotriazolium Ionic Liquid-Modified Periodic Mesoporous Organosilica as a Heterogeneous and Recyclable Nanocatalyst

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present study, we demonstrated the synthesis of copper oxychloride anionic benzotriazolium ionic liquid-modified periodic mesoporous organosilica PMO@ILCu2(OH)3Cl2(x) as efficient and green retrievable heterogeneous nanocatalysts for the synthesis of cyclic carbonates via cycloaddition of CO2 with epoxides. Compared to other nanocatalysts, a superior catalytic activity was observed with PMO@ILCu2(OH)3Cl2(1.0), giving excellent yields and selectivities under solvent- and cocatalyst-free conditions. We also found that the existence of intensification synergistic effects from the hydroxyl groups sites of periodic mesoporous organosilica and the active sites of the functionalized ionic liquid, resulting in the enhanced catalytic activity. The catalytic process displayed ease of recovery, excellent stability and recyclability for at least five runs without significant loss of its catalytic activity. The developed catalytic system is proven to be a powerful tool for the chemical fixation of CO2 with epoxides to produce the cyclic carbonates.

An efficient protocol is described for producing cyclic carbonates in excellent yields and selectivities under cocatalyst- and solvent-free conditions by treating epoxides with carbon dioxide, promoted by copper oxychloride anionic benzotriazolium ionic liquid-modified periodic mesoporous organosilica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tappe NA, Reich RM, D’Elia V, Kühn FE (2018) Dalton Trans 47:13281–13313

  2. Dalpozzo R, Ca ND, Gabriele B, Mancuso R (2019) Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts 9:511

    Google Scholar 

  3. Mousavian S, Faravar P, Zarei Z, Azimikia R, Monjezi MG, Kianfar E (2020) Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J Environ Chem Eng 8(4):103946

    CAS  Google Scholar 

  4. Kianfar E, Pirouzfar V, Sakhaeinia H (2017) An experimental study on absorption/stripping CO 2 using mono-ethanol amine hollow fiber membrane contactor. J Taiwan Inst Chem Eng 80:954–962

    CAS  Google Scholar 

  5. Kianfar E, Salimi M, Kianfar F, Kianfar M, Razavikia SAH (2019) CO2/N2 Separation Using Polyvinyl Chloride Iso-Phthalic Acid/Aluminium Nitrate Nanocomposite Membrane. Macromol Res 27(1):83–89

    CAS  Google Scholar 

  6. Salimi M, Pirouzfar V, Kianfar E (2017) Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym Sci 295(1):215–226

    CAS  Google Scholar 

  7. Kamphuis AJ, Picchioni F, Pescarmona PP (2019) CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chem 21:406–448

    CAS  Google Scholar 

  8. Büttner H, Longwitz L, Steinbauer J, Wulf C, Werner T (2017) Top Curr Chem 375:50

  9. Martín C, Fiorani G, Kleij AW (2015) Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal 5:1353–1370

    Google Scholar 

  10. Martnez J, Fernndez-Baeza J, Snchez-Barba LF, Castro-Osma JA, Lara-Snchez A, Otero A (2017) An Efficient and Versatile Lanthanum Heteroscorpionate Catalyst for Carbon Dioxide Fixation into Cyclic Carbonates. ChemSusChem 10:2886–2890

    Google Scholar 

  11. Meléndez DO, Lara-Sánchez A, Martínez J, Wu X, Otero A, Castro-Osma JA, North M, Rojas RS (2018). ChemCatChem 10:2271–2277

    Google Scholar 

  12. Ahmadi F, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Khosropour AR (2011) Highly efficient chemical fixation of carbon dioxide catalyzed by high-valent tetraphenylporphyrinatotin(IV) triflate. Inorg Chem Commun 14:1489–1493

    CAS  Google Scholar 

  13. Ma R, He LN, Liu XF, Liu X, Wang MY (2017) J CO2 Util 19:28–32

  14. Sopeña S, Martin E, Escudero-Adán EC, Kleij AW (2017) Pushing the Limits with Squaramide-Based Organocatalysts in Cyclic Carbonate Synthesis. ACS Catal 7:3532–3539

    Google Scholar 

  15. Wu Z, Xie H, Yu X, Liu E (2013) Lignin-Based Green Catalyst for the Chemical Fixation of Carbon Dioxide with Epoxides To Form Cyclic Carbonates under Solvent-Free Conditions. ChemCatChem 5:1328–1333

    CAS  Google Scholar 

  16. Zhao LY, Chen JY, Li WC, Lu AH (2019) J CO2 Util 29:172–178

  17. Liang J, Huang YB, Cao R (2019). Coordin Chem Rev 378:32–65

    CAS  Google Scholar 

  18. Zhou Z, Yang L, Wang Y, He C, Duan C (2018) Recent Advance on Chemical Fixation of Carbon Dioxide by Metal-organic Frame-works as Heterogeneous Catalysts. Curr Org Chem 22:1809–1824

    CAS  Google Scholar 

  19. Nourian M, Zadehahmadi F, Kardanpour R, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Bahadori M (2017) Chemical fixation of carbon dioxide catalyzed by magnetically recoverable NH2-MIL-101(Al) as an elegant nanoreactor. Catal Commun 94:42–46

    CAS  Google Scholar 

  20. Liu M, Liu B, Liang L, Wang F, Shi L, Sun J (2016) Design of bifunctional NH3I-Zn/SBA-15 single-component heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. J Mol Catal A Chem 418-419:78–85

    CAS  Google Scholar 

  21. Chang H, Li Q, Cui X, Wang H, Bu Z, Qiao C, Lin T (2018) J CO2 Util 24:174–179

  22. Yu SS, Liu XH, Ma JG, Niu Z, Cheng P (2016) J CO2 Util 14:122–125

  23. Prajapati PK, Kumar A, Jain SL (2018) First Photocatalytic Synthesis of Cyclic Carbonates from CO2and Epoxides Using CoPc/TiO2Hybrid under Mild Conditions. ACS Sustain Chem Eng 6:7799–7809

    CAS  Google Scholar 

  24. Chen JH, Deng CH, Fang S, Ma JG, Cheng P (2018). Green Chem 20:989–996

    CAS  Google Scholar 

  25. Chowdhury AH, Chowdhury IH, Islam SM (2019) Titanium Phosphate with Flower-like Morphology As an Effective Reusable Catalyst for Chemical Fixation of CO2at Mild Reaction Conditions. Ind Eng Chem Res 58:11779–11786

    CAS  Google Scholar 

  26. Milani JLS, Meireles AM, Cabral BN, Bezerra WA, Martins FT, Martins DCS, Chagas RP (2019) J CO2 Util 30:100–106

  27. Zhang SJ, Lu XM (2006) Ionic liquids: from fundamental research to industrial applications. Science Press, Beijing

    Google Scholar 

  28. Costa JAS, Vedovello P, Paranhos CM (2020) Use of Ionic Liquid as Template for Hydrothermal Synthesis of the MCM-41 Mesoporous Material. Silicon 12:289–294

    CAS  Google Scholar 

  29. Asim AM, Uroos M, Naz S, Sultan M, Griffin G, Muhammad N, Khan AS (2019) Acidic ionic liquids: Promising and cost-effective solvents for processing of lignocellulosic biomass. J Mol Liq 287:110943

    CAS  Google Scholar 

  30. Cheng C, Zhang C, Jiang J, Wang J, Bai J, Yuan W, Wang L (2019) Recycling of Polysilicon Byproduct SiCl4 Dissolved in Ionic Liquids. Silicon 11:909–917

    CAS  Google Scholar 

  31. Prodius D, Mudring AV (2018) Rare earth metal-containing ionic liquids. Coordin Chem Rev 363:1–16

    CAS  Google Scholar 

  32. Dengler JE, Doroodian A, Rieger B (2011) Protic metal-containing ionic liquids as catalysts: Cooperative effects between anion and cation. J Organomet Chem 696:3831–3835

    CAS  Google Scholar 

  33. Goodrich P, Gunaratne HQN, Jacquemin J, Jin L, Lei Y, Seddon KR (2017) Sustainable Cyclic Carbonate Production, Utilizing Carbon Dioxide and Azolate Ionic Liquids. ACS Sustain Chem Eng 5:5635–5641

    CAS  Google Scholar 

  34. Honores J, Quezada D, Chacón G, Martínez-Ferraté O, Isaacs M (2019) Synthesis of Cyclic Carbonates from CO2 and Epoxide Catalyzed by Co, Ni and Cu Complexes in Ionic Liquids. Catal Lett 149:1825–1832

    CAS  Google Scholar 

  35. He Q, O’Brien JW, Kitselman KA, Tompkins LE, GCT C, Kerton FM (2014) Synthesis of cyclic carbonates from CO2and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures. Catal Sci Technol 4:1513–1528

    CAS  Google Scholar 

  36. Vieira MO, Monteiro WF, Neto BS, Ligabue R, Chaban VV, Einloft S (2018) Surface Active Ionic Liquids as Catalyst for CO2 Conversion to Propylene Carbonate. Catal Lett 148:108–118

    CAS  Google Scholar 

  37. Song YY, Jin QR, Zhang SL, Jing HW, Zhu QQ (2011) Chiral metal-containing ionic liquid: Synthesis and applications in the enantioselective cycloaddition of carbon dioxide to epoxides. Sci China Chem 54:1044–1050

    CAS  Google Scholar 

  38. Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018). Int J Chem React Eng 16(7):20170229

    CAS  Google Scholar 

  39. Kianfar E, Salimi M, Hajimirzaee S, Koohestani B (2019). Int J Chem React Eng 17(2):20180127

    Google Scholar 

  40. Kianfar E (2019) Nanozeolites: synthesized, properties, applications. J Sol-Gel Sci Techn 91(2):415–429

    CAS  Google Scholar 

  41. Kianfar E (2018) Synthesis and Characterization of AlPO4/ZSM-5 Catalyst for Methanol Conversion to Dimethyl Ether. Russ J Appl Chem 91(10):1711–1720

    CAS  Google Scholar 

  42. Kianfar E (2019) Ethylene to Propylene over Zeolite ZSM-5: Improved Catalyst Performance by Treatment with CuO. Russ J Appl Chem 92(7):933–939

    CAS  Google Scholar 

  43. Kianfar E (2019) Ethylene to Propylene Conversion over Ni-W/ZSM-5 Catalyst. Russ J Appl Chem 92(8):1094–1101

    CAS  Google Scholar 

  44. Kianfar E (2019) Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: a review. Rev Inorg Chem 39(3):157–177

    CAS  Google Scholar 

  45. Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018) Synthesis of modified catalyst and stabilization of CuO/NH4‐ZSM‐5 for conversion of methanol to gasoline. Int J Appl Ceram Technol 15(3):734–741

    CAS  Google Scholar 

  46. Kianfar E, Azimikia R, Faghih SM (2020) Simple and Strong Dative Attachment of α-Diimine Nickel (II) Catalysts on Supports for Ethylene Polymerization with Controlled Morphology. Catal Lett 150:2322–2330

    CAS  Google Scholar 

  47. Kianfar E, Hajimirzaee S, Musavian S, Mehr AS (2020) Zeolite-based catalysts for methanol to gasoline process: A review. Microchem J 156:104822

    CAS  Google Scholar 

  48. Fehrmann R, Riisager A, Haumann M (2014) Supported ionic liquids: fundamentals and applications. Weinheim, Wiley-VCH Verlag

    Google Scholar 

  49. Bahadori M, Tangestaninejad S, Bertmer M, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F (2019) Task-Specific Ionic Liquid Functionalized–MIL–101(Cr) as a Heterogeneous and Efficient Catalyst for the Cycloaddition of CO2with Epoxides Under Solvent Free Conditions. ACS Sustain Chem Eng 7:3962–3973

    CAS  Google Scholar 

  50. Muniandy L, Adam F, Rahman NRA, Ng EP (2019) Highly selective synthesis of cyclic carbonates via solvent free cycloaddition of CO2 and epoxides using ionic liquid grafted on rice husk derived MCM-41. Inorg Chem Commun 104:1–7

    CAS  Google Scholar 

  51. Boroujeni KP, Ghasemi P, Rafienia Z (2014) Synthesis of biscoumarin derivatives using poly(4-vinylpyridine)-supported dual acidic ionic liquid as a heterogeneous catalyst. Monatsh Chem 145:1023–1026

    Google Scholar 

  52. Zand HRE, Ghafuri H, Rashidizadeh A, Khoushab Z (2019) Study on Oxidative Condensation of Toluene and Hydrazine/Aniline Catalyzed by Copper Complex Immobilized on Functionalized Graphene Oxide. Ind Eng Chem Res 58:5379–5387

    Google Scholar 

  53. Xia X, Hu G, Li W, Li S (2019) Understanding Reduced CO2Uptake of Ionic Liquid/Metal–Organic Framework (IL/MOF) Composites. ACS Appl Nano Mater 2:6022–6029

    CAS  Google Scholar 

  54. Andrade LS, Castanheira B, Brochsztain S (2020) Periodic mesoporous organosilicas containing naphthalenediimides within the pore walls for asphaltene adsorption. Micropor Mesopor Mater 294:109909

    CAS  Google Scholar 

  55. Manchanda AS (2015) Large-pore mesoporous organosilicas and related polymer nanocomposites. CUNY Academic Works

  56. Kao HM, Chung CH, Saikia D, Liao SH, Chao PY, Chen YH, Wu KCW (2012) Highly Carboxylic-Acid-Functionalized Ethane-Bridged Periodic Mesoporous Organosilicas: Synthesis, Characterization, and Adsorption Properties. Chem Asian J 7:2111–2117

    CAS  PubMed  Google Scholar 

  57. Birault A, Molina E, Trens P, Cot D, Toquer G, Marcotte N, Carcel C, Bartlett JR, Gérardin C, Man MWC (2019) Periodic Mesoporous Organosilicas from Polyion Complex Micelles - Effect of Organic Bridge on Nanostructure. Eur J Inorg Chem 2019:3157–3164

    CAS  Google Scholar 

  58. Shylesh S, Srilakshmi C, Singh AP, Anderson BG (2007) One step synthesis of chromium-containing periodic mesoporous organosilicas and their catalytic activity in the oxidation of cyclohexane. Micropor Mesopor Mater 99:334–344

    CAS  Google Scholar 

  59. Lin F, Meng X, Kukueva E, Altantzis T, Mertens M, Bals S, Cool P, Doorslaer SV (2015) Direct-synthesis method towards copper-containing periodic mesoporous organosilicas: detailed investigation of the copper distribution in the material. Dalton Trans 44:9970–9979

    CAS  PubMed  Google Scholar 

  60. Deka JR, Kao HM, Huang SY, Chang WC, Ting CC, Rath PC, Chen CS (2014) Ethane-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acid Groups: Synthesis, Bifunctionalization, and Fabrication of Metal Nanoparticles. Chem Eur J 20:894–903

    CAS  PubMed  Google Scholar 

  61. Wang X, Thiel I, Fedorov A, Copéret C, Mougel V, Fontecave M (2017) Site-isolated manganese carbonyl on bipyridine-functionalities of periodic mesoporous organosilicas: efficient CO2photoreduction and detection of key reaction intermediates. Chem Sci 8:8204–8213

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Karimi B, Elhamifar D, Yari O, Khorasani M, Vali H, Clark JH, Hunt AJ (2012) Synthesis and Characterization of Alkyl-Imidazolium-Based Periodic Mesoporous Organosilicas: A Versatile Host for the Immobilization of Perruthenate (RuO4−) in the Aerobic Oxidation of Alcohols. Chem Eur J 18:13520–13530

    CAS  PubMed  Google Scholar 

  63. Takeda H, Ohashi M, Goto Y, Ohsuna T, Tani T, Inagaki S (2016) A Versatile Solid Photosensitizer: Periodic Mesoporous Organosilicas with Ruthenium Tris(bipyridine) Complexes Embedded in the Pore Walls. Adv Funct Mater 26:5068–5077

    CAS  Google Scholar 

  64. Doustkhah E, Mohtasham H, Hasani M, Ide Y, Rostamnia S, Tsunoji N, Assadi MHN (2020) Merging periodic mesoporous organosilica (PMO) with mesoporous aluminosilica (Al/Si-PMO): A catalyst for green oxidation. Mol Catal 482:110676

    CAS  Google Scholar 

  65. Bakshi PS, Gusain R, Dhawaria M, Suman SK, Khatri OP (2016) Antimicrobial and lubrication properties of 1-acetyl-3-hexylbenzotriazolium benzoate/sorbate ionic liquids. RSC Adv 6:46567–46572

    CAS  Google Scholar 

  66. Wang G, Huang B, Li Z, Wang Z, Qin X, Zhang X, Dai Y, Whangbo MH (2015) On Structural Features Necessary for Near-IR-Light Photocatalysts. Chem Eur J 21:13583–13587

    CAS  PubMed  Google Scholar 

  67. Han MS, Lee BG, Ahn BS, Moon DJ, Hong SI (2003) Surface properties of CuCl2/AC catalysts with various Cu contents: XRD, SEM, TG/DSC and CO-TPD analyses. Appl Surf Sci 211:76–81

    CAS  Google Scholar 

  68. Kwak JH, Varga T, Peden CHF, Gao F, Hanson JC, Szanyi J (2014) Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: A combined in situ TP-XRD, XANES/DRIFTS study. J Catal 314:83–93

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Science and Technology Program of Jiangxi Provincial Education Bureau (No. GJJ180575) and Natural Science Foundation of Jiangxi Province of China (No. 20202BABL203023) for the support on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lin Hu.

Ethics declarations

Conflict of interest

There is no conflict of interest for each contributing author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BingLiu, X., Hu, Y.L. Novel and Highly Efficient Conversion of Carbon Dioxide to Cyclic Carbonates Using Benzotriazolium Ionic Liquid-Modified Periodic Mesoporous Organosilica as a Heterogeneous and Recyclable Nanocatalyst. Silicon 13, 4013–4024 (2021). https://doi.org/10.1007/s12633-020-00693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00693-x

Keywords

Navigation