Skip to main content
Log in

Efficient synthesis of cyclic carbonate via transformation of CO2 catalyzed by solid-base bifunctional graphitic carbon nitride materials

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Catalytic cycloaddition of CO2 is a practical strategy to synthesize cyclic carbonate and is also a sustainable route to utilize CO2. Graphitic carbon nitride (g-C3N4) is a typical solid base but showed limited activity in catalytic cycloaddition of CO2 due to its lack of acidic sites. Herein, acid–base bifunctional g-C3N4 materials were synthesized. The incorporation of Zr and Al cations into g-C3N4 induced the formation of acidic sites and meanwhile enhanced the basic strength. The characterization results revealed that metal cations might coordinate with nitrogen atoms of g-C3N4. As heterogeneous catalysts, the synthesized ZrxAlyO/g-C3N4 materials showed superior catalytic activity to ZrO2/g-C3N4 in the cycloaddition of CO2 with propylene oxide. Under optimal reaction conditions, the maximum yield of propylene carbonate reached 90%, and the catalysts were able to be recycled at least five times without any loss in catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The pore size distributions of the material, and effects of reaction time and amount of PO and DMF on the catalytic performance are provided in the Supplementary Information.

References

  1. J. Peng, H.-J. Yang, S. Wang, B. Ban, Z. Wei, B. Lei, C.-Y. Guo, J. CO2 Util. 24, 1 (2018)

  2. A. Samikannu, L.J. Konwar, P. Mäki-Arvela, J.-P. Mikkola, Appl. Catal. B 241, 41 (2019)

    CAS  Google Scholar 

  3. D. Si, X. Song, H. Li, M. Ji, Y. Shi, C. Hao, Mol. Catal. 482, 110699 (2020)

    CAS  Google Scholar 

  4. H. Kim, H. Moon, M. Sohail, Y. Yoon, S.F.A. Shah, K. Yim, J. Moon, Y.C. Park, J. Mater. Sci. 54, 11796 (2019)

    CAS  Google Scholar 

  5. B. Song, L. Guo, R. Zhang, X. Zhao, H. Gan, C. Chen, J. Chen, W. Zhu, Z. Hou, J. CO2 Util. 6, 62 (2014)

  6. F. Liu, Y. Gu, H. Xin, P. Zhao, J. Gao, M. Liu, ACS Sustain. Chem. Eng. 7, 16674 (2019)

    CAS  Google Scholar 

  7. D.-H. Lan, N. Fan, Y. Wang, X. Gao, P. Zhang, L. Chen, C.-T. Au, S.-F. Yin, Chin. J. Catal. 37, 826 (2016)

    CAS  Google Scholar 

  8. Y. Xie, T.T. Wang, X.H. Liu, K. Zou, W.Q. Deng, Nat. Commun. 4, 2013 (1960)

    Google Scholar 

  9. F. Della Monica, M. Leone, A. Buonerba, A. Grassi, S. Milione, C. Capacchione, Mol. Catal. 460, 46 (2018)

  10. T. Wang, D. Zheng, Y. Ma, J. Guo, Z. He, B. Ma, L. Liu, T. Ren, L. Wang, J. Zhang, J. CO2 Util. 22, 44 (2017)

  11. D.-H. Lan, Y.-X. Gong, N.-Y. Tan, S.-S. Wu, J. Shen, K.-C. Yao, B. Yi, C.-T. Au, S.-F. Yin, Carbon 127, 245 (2018)

    CAS  Google Scholar 

  12. C. Yang, Y. Chen, P. Xu, L. Yang, J. Zhang, J. Sun, Mol. Catal. 480, 110637 (2020)

    CAS  Google Scholar 

  13. D.-H. Lan, H.-T. Wang, L. Chen, C.-T. Au, S.-F. Yin, Carbon 100, 81 (2016)

    CAS  Google Scholar 

  14. Y. Chen, P. Xu, M. Arai, J. Sun, Adv. Synth. Catal. 361, 335 (2019)

    CAS  Google Scholar 

  15. X. Jin, V.V. Balasubramanian, S.T. Selvan, D.P. Sawant, M.A. Chari, G.Q. Lu, A. Vinu, Angew. Chem. Int. Ed. 48, 7884 (2009)

    CAS  Google Scholar 

  16. M.B. Ansari, H. Jin, M.N. Parvin, S.-E. Park, Catal. Today 185, 211 (2012)

    CAS  Google Scholar 

  17. J. Xu, Y. Wang, J.-K. Shang, Q. Jiang, Y.-X. Li, Catal. Sci. Technol. 6, 4192 (2016)

    CAS  Google Scholar 

  18. J. Xu, K.-Z. Long, Y. Wang, B. Xue, Y.-X. Li, Appl. Catal. A 496, 1 (2015)

    CAS  Google Scholar 

  19. J. Xu, T. Chen, Q. Jiang, Y.-X. Li, Chem. Asian J. 9, 3269 (2014)

    CAS  PubMed  Google Scholar 

  20. M.B. Ansari, H. Jin, S.-E. Park, Catal. Sci. Technol. 3, 1261 (2013)

    CAS  Google Scholar 

  21. J. Zhu, T. Diao, W. Wang, X. Xu, X. Sun, S.A.C. Carabineiro, Z. Zhao, Appl. Catal. B 219, 92 (2017)

    CAS  Google Scholar 

  22. J. Xu, Y.-L. Gan, P. Hu, H. Zheng, B. Xue, Catal. Sci. Technol. 8, 5582 (2018)

    CAS  Google Scholar 

  23. Z. Huang, F. Li, B. Chen, T. Lu, Y. Yuan, G. Yuan, Appl. Catal. B 136, 269 (2013)

    Google Scholar 

  24. N. Liu, F. Wu, J. Xu, B. Xue, J. Luo, Catal. Lett. (2022)

  25. C.V. Reddy, B. Babu, I.N. Reddy, J.-J. Shim, Ceram. Int. 44, 6940 (2018)

    CAS  Google Scholar 

  26. M. Zhou, Y. Wu, L. Shi, S. Hu, H. Li, Y. Gong, L. Niu, X. Liu, C. Li, Solid State Sci. 104, 106202 (2020)

    CAS  Google Scholar 

  27. F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 45, 4467 (2006)

    CAS  Google Scholar 

  28. J. Xu, Y.-L. Gan, J.-J. Pei, B. Xue, Mol. Catal. 491, 110979 (2020)

    CAS  Google Scholar 

  29. X. Dong, F. Cheng, J. Mater. Chem. A 3, 23642 (2015)

    CAS  Google Scholar 

  30. M.J. Bojdys, J.-O. Müller, M. Antonietti, A. Thomas, Chem. Eur. J. 14, 8177 (2008)

    CAS  PubMed  Google Scholar 

  31. Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, S. Zhang, Catal. Sci. Technol. 4, 1556 (2014)

    CAS  Google Scholar 

  32. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)

    CAS  PubMed  Google Scholar 

  33. H. Li, L. Wang, Y. Liu, J. Lei, J. Zhang, Res. Chem. Intermed. 42, 3979 (2016)

    CAS  Google Scholar 

  34. X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Adv. Mater. 21, 1609 (2009)

    CAS  Google Scholar 

  35. X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc. 131, 11658 (2009)

    CAS  PubMed  Google Scholar 

  36. D. Chen, K. Wang, T. Ren, H. Ding, Y. Zhu, Dalton Trans. 43, 13105 (2014)

    CAS  PubMed  Google Scholar 

  37. M. Ismael, Y. Wu, M. Wark, New J. Chem. 43, 4455 (2019)

    CAS  Google Scholar 

  38. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, J. Mater. Chem. 18, 4893 (2008)

    CAS  Google Scholar 

  39. M. Tayyab, L. Liu, C.-H. Lee, Chemosphere 280, 130685 (2021)

    CAS  PubMed  Google Scholar 

  40. Y. Wang, Y. Wang, Y. Li, H. Shi, Y. Xu, H. Qin, X. Li, Y. Zuo, S. Kang, L. Cui, Catal. Commun. 72, 24 (2015)

    CAS  Google Scholar 

  41. X.-J. Wang, C. Liu, X.-L. Li, F.-T. Li, Y.-P. Li, J. Zhao, R.-H. Liu, Appl. Sur. Sci. 394, 340 (2017)

    CAS  Google Scholar 

  42. F.-T. Li, Y. Zhao, Q. Wang, X.-J. Wang, Y.-J. Hao, R.-H. Liu, D. Zhao, J. Hazard. Mater. 283, 371 (2015)

    CAS  PubMed  Google Scholar 

  43. F. Su, M. Antonietti, X. Wang, Catal. Sci. Technol. 2, 1005 (2012)

    CAS  Google Scholar 

  44. Y.-L. Gan, X.-Q. Hu, L.-Z. Wen, J. Xu, B. Xue, New J. Chem. 44, 3215 (2020)

    CAS  Google Scholar 

  45. Z. Huang, F. Li, B. Chen, G. Yuan, Catal. Sci. Technol. 6, 2942 (2016)

    CAS  Google Scholar 

  46. J. He, T. Wu, Z. Zhang, K. Ding, B. Han, Y. Xie, T. Jiang, Z. Liu, Chem. -Eur. J. 13, 6992 (2007)

    CAS  PubMed  Google Scholar 

  47. S. Zhong, L. Liang, B. Liu, J. Sun, J. CO2 Util. 6, 75 (2014)

  48. L. Wang, L. Lin, G. Zhang, K. Kodama, M. Yasutake, T. Hirose, Chem. Commun. 50, 14813 (2014)

    CAS  Google Scholar 

  49. J. Xu, J.-K. Shang, Q. Jiang, Y. Wang, Y.-X. Li, RSC Adv. 6, 55382 (2016)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21878027, 22278041), the Natural Science Foundation of Jiangsu Province of China (BK2010485), and Qing Lan Project of Jiangsu Province (2014). J. Xu also thanks Dr. Mengyan Chen of the Shiyanjia Lab (www.shiyanjia.com) for her help in XPS characterization.

Funding

This work was supported by the National Natural Science Foundation of China (21878027, 22278041), the Natural Science Foundation of Jiangsu Province of China (BK2010485), and Qing Lan Project of Jiangsu Province (2014).

Author information

Authors and Affiliations

Authors

Contributions

NL conducted the main research experiments and wrote the draft of the manuscript. JD analyzed materials. JX conceived the research work and revised the manuscript. BX analyzed materials. JL supervised the research work.

Corresponding authors

Correspondence to Jie Xu or Jun Luo.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare for each contributing author.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Du, J., Xu, J. et al. Efficient synthesis of cyclic carbonate via transformation of CO2 catalyzed by solid-base bifunctional graphitic carbon nitride materials. Res Chem Intermed 48, 4883–4900 (2022). https://doi.org/10.1007/s11164-022-04856-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04856-w

Keywords

Navigation